...
首页> 外文期刊>Applied Surface Science >Facile synthesis of Si@void@C nanocomposites from low-cost microsized Si as anode materials for lithium-ion batteries
【24h】

Facile synthesis of Si@void@C nanocomposites from low-cost microsized Si as anode materials for lithium-ion batteries

机译:以低成本微米级硅作为锂离子电池阳极材料,可轻松合成Si @ void @ C纳米复合材料

获取原文
获取原文并翻译 | 示例
           

摘要

High-capacity anodes, such as Si, are much more attractive than graphite for next generation lithium-ion batteries (LIBs) due to their high theoretical storage capacity. However, successful practical applications of Si anodes in high energy density LIBs are hindered by the huge volume change during cycling, which causes the active material pulverization and unstable solid electrolyte interphase films. In this study, we successfully synthesized Si@void@C nanocomposites from commercial low-cost microsized Si via a combination of facile high-energy mechanical milling, resorcinol-formaldehyde resin coating and sodium hydroxide etching. The as-prepared Si@void@C consists of nanosized Si particles fully embedded into mesoporous carbon shells with abundant voids. The Si@void@C anodes exhibit a high reversible capacity of 1088 mAh g(-1) over 300 cycles at a rate of 500 mA g(-1). Even at a much higher current density of 8 A g(-1), the Si@void@C anodes can still deliver a high reversible capacity of 714 mAh g(-1). These outstanding performances are assigned to the nanosized Si that is able to alleviate mechanical strain, and the buffering effect of mesoporous carbon shells as well as abundant voids for Si volume expansion. The synthesis process is simple, scalable, and cost-effective, providing a promising alternative way to large-scale production of inexpensive high-performance silicon-based materials for next-generation LIBs.
机译:对于下一代锂离子电池(LIB),高容量阳极(例如Si)比石墨更具吸引力,因为它们具有很高的理论存储容量。然而,由于在循环过程中体积的巨大变化阻碍了硅阳极在高能量密度LIB中的成功实际应用,这会导致活性物质粉碎和不稳定的固体电解质中间膜。在这项研究中,我们通过简便的高能机械研磨,间苯二酚-甲醛树脂涂层和氢氧化钠蚀刻相结合,成功地从商业低成本微细Si合成了Si @ void @ C纳米复合材料。所制备的Si @ void @ C由完全嵌入具有大量空隙的中孔碳壳中的纳米尺寸的Si颗粒组成。 Si @ void @ C阳极在300个循环中以500 mA g(-1)的速率显示出1088 mAh g(-1)的高可逆容量。即使在更高的8 A g(-1)电流密度下,Si @ void @ C阳极仍可以提供714 mAh g(-1)的高可逆容量。这些杰出的性能被赋予能够缓解机械应变的纳米尺寸的硅,以及介孔碳壳的缓冲作用以及大量的硅体积膨胀空隙。合成过程简单,可扩展且具有成本效益,为大规模生产下一代LIB的廉价高性能硅基材料提供了一种有希望的替代方法。

著录项

  • 来源
    《Applied Surface Science》 |2019年第15期|287-295|共9页
  • 作者单位

    Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Hubei, Peoples R China;

    Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Hubei, Peoples R China;

    Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Hubei, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Silicon, anodes; Low cost; Milling; Lithium-ion batteries; Microsized;

    机译:硅;阳极;低成本;铣削;锂离子电池;微型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号