首页> 外文期刊>Applied Surface Science >Comparison of performance and optoelectronic processes in ZnO and TiO_2 nanorod array-based hybrid solar cells
【24h】

Comparison of performance and optoelectronic processes in ZnO and TiO_2 nanorod array-based hybrid solar cells

机译:ZnO和TiO_2纳米棒阵列混合太阳能电池的性能和光电过程的比较

获取原文
获取原文并翻译 | 示例

摘要

The reported efficiencies of pristine ZnO nanorod array (NRA)-based polymer-inorganic hybrid solar cells (HSCs) are normally lower than those of their pristine TiO2 NRA-based counterparts. This difference typically results from the lower short-circuit current density (J(sc)) of the ZnO NRA device. This paper presents a comparative study of pristine ZnO and TiO2 NRA-based HSCs. We investigate the morphological structure (length, diameter, number density, area of nanorod laterals), photovoltaic performance (current density-voltage J-V, external quantum efficiency EQE), and optoelectronic processes related to electron transfer (electron mobility mu(e), electron diffusion length L-D, electron lifetime tau(e) and electron transit time tau(t) related electron collecting efficiency eta(cc),( )electron injection surface potential SP, photoluminescence PL, bound charge pairs BCP) in HSCs, with ZnO and TiO2 NRA as electron acceptor. Our comparative investigations reveal that the factors relating to the interface area, mu(e), L-D, and eta(cc) are not the key factors responsible for the difference in the value of J(sc) in ZnO and TiO2 NRA-based HSCs with the same device structure. In fact, the crucial step for a lower J(sc )in ZnO NRA-based HSCs than in TiO2 NRA-based HSCs is attributed to the less efficient transfer of photo-generated electrons at the charge separation interface in ZnO NRA-based HSCs. Dynamic characterizations indicate that the transfer of interfacial photo-generated electrons in TiO2 NRA-based HSCs is more efficient than ZnO NRA-based HSCs, and is confirmed by Kelvin probe force microscopy (KPFM) and PL studies. The reason for the better interface charge transfer property in MEH-PPV/TiO2 NRA than that of in MEH-PPV/ZnO NRA is further investigated by Marcus model, we find that more trapped BCP states are generated in the ZnO NRA based HSCs, which resulting in lower interfacial electron injection efficiency from polymer to ZnO NRA.
机译:报告的基于原始ZnO纳米棒阵列(NRA)的聚合物-无机混合太阳能电池(HSC)的效率通常低于其基于原始TiO2 NRA的同类材料的效率。这种差异通常是由于ZnO NRA器件的短路电流密度(J(sc))较低而引起的。本文介绍了基于原始ZnO和TiO2 NRA的HSC的比较研究。我们研究了形态结构(长度,直径,数量密度,纳米棒侧面的面积),光伏性能(电流密度-电压JV,外部量子效率EQE)以及与电子转移有关的光电过程(电子迁移率mu(e),电子ZnO和TiO2在HSC中的扩散长度LD,电子寿命tau(e)和电子渡越时间tau(t)相关的电子收集效率eta(cc),(电子注入表面电势SP,光致发光PL,束缚电荷对BCP) NRA作为电子受体。我们的比较研究表明,与界面面积,mu(e),LD和eta(cc)有关的因素不是造成ZnO和TiO2 NRA基HSC中J(sc)值差异的关键因素。具有相同的设备结构。实际上,与基于TiO2 NRA的HSC相比,在ZnO NRA的HSC中降低J(sc)的关键步骤是由于光生电子在ZnO NRA的HSC的电荷分离界面传输效率较低。动态特性表明,基于TiO2 NRA的HSC中界面光生电子的转移比基于ZnO NRA的HSC更有效,并且已通过开尔文探针力显微镜(KPFM)和PL研究得到证实。通过Marcus模型进一步研究了MEH-PPV / TiO2 NRA中比MEH-PPV / ZnO NRA中更好的界面电荷转移性能的原因,我们发现在基于ZnO NRA的HSC中产生了更多的捕获BCP状态。导致从聚合物到ZnO NRA的界面电子注入效率降低。

著录项

  • 来源
    《Applied Surface Science》 |2018年第31期|124-132|共9页
  • 作者单位

    Huzhou Univ, Sch Sci, Huzhou 313000, Peoples R China;

    South Dakota State Univ, Dept Elect Engn & Comp Sci, Ctr Adv Photovolta, Brookings, SD 57007 USA;

    South Dakota State Univ, Dept Elect Engn & Comp Sci, Ctr Adv Photovolta, Brookings, SD 57007 USA;

    South Dakota State Univ, Dept Elect Engn & Comp Sci, Ctr Adv Photovolta, Brookings, SD 57007 USA;

    South Dakota State Univ, Dept Elect Engn & Comp Sci, Ctr Adv Photovolta, Brookings, SD 57007 USA;

    South Dakota State Univ, Dept Elect Engn & Comp Sci, Ctr Adv Photovolta, Brookings, SD 57007 USA;

    Huzhou Univ, Dept Mat Chem, Huzhou 313000, Peoples R China;

    Huzhou Univ, Sch Sci, Huzhou 313000, Peoples R China;

    Huzhou Univ, Sch Sci, Huzhou 313000, Peoples R China;

    Huzhou Univ, Sch Sci, Huzhou 313000, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Solar cells; Hybrid semiconductor; Optoelectronic processes; Nanorod array;

    机译:太阳能电池;混合半导体;光电工艺;纳米棒阵列;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号