首页> 外文期刊>Applied Physics Letters >Low power zinc-oxide based charge trapping memory with embedded silicon nanoparticles via poole-frenkel hole emission
【24h】

Low power zinc-oxide based charge trapping memory with embedded silicon nanoparticles via poole-frenkel hole emission

机译:通过Poole-Frenkel空穴发射实现具有嵌入式硅纳米粒子的低功耗基于氧化锌的电荷陷阱存储

获取原文
获取原文并翻译 | 示例
           

摘要

A low power zinc-oxide (ZnO) charge trapping memory with embedded silicon (Si) nanoparticles is demonstrated. The charge trapping layer is formed by spin coating 2 nm silicon nanoparticles between Atomic Layer Deposited ZnO steps. The threshold voltage shift (ΔVt) vs. programming voltage is studied with and without the silicon nanoparticles. Applying −1 V for 5 s at the gate of the memory with nanoparticles results in a ΔVt of 3.4 V, and the memory window can be up to 8 V with an excellent retention characteristic (>10 yr). Without nanoparticles, at −1 V programming voltage, the ΔVt is negligible. In order to get ΔVt of 3.4 V without nanoparticles, programming voltage in excess of 10 V is required. The negative voltage on the gate programs the memory indicating that holes are being trapped in the charge trapping layer. In addition, at 1 V the electric field across the 3.6 nm tunnel oxide is calculated to be 0.36 MV/cm, which is too small for significant tunneling. Moreover, the ΔVt vs. electric field across the tunnel oxide shows square root dependence at low fields (E < 1 MV/cm) and a square dependence at higher fields (E > 2.7 MV/cm). This indicates that Poole-Frenkel Effect is the main mechanism for holes emission at low fields and Phonon Assisted Tunneling at higher fields.
机译:演示了具有嵌入式硅(Si)纳米粒子的低功耗氧化锌(ZnO)电荷捕获存储器。电荷捕获层是通过在原子层沉积的ZnO步骤之间旋涂2 nm硅纳米颗粒而形成的。研究了在有和没有硅纳米粒子的情况下阈值电压偏移(ΔVt)与编程电压的关系。在具有纳米颗粒的存储器的栅极上施加-1 V电压5 s,导致ΔVt为3.4 V,并且存储器窗口可以高达8 V,并具有出色的保持特性(> 10年)。如果没有纳米颗粒,则在-1 V的编程电压下,ΔVt可以忽略不计。为了在没有纳米颗粒的情况下获得3.4 V的ΔVt,需要超过10 V的编程电压。栅极上的负电压对存储器进行编程,指示空穴被捕获在电荷捕获层中。此外,在1 V电压下,在3.6 nm隧道氧化物上的电场经计算为0.36 MV / cm,对于显着的隧穿而言,该电场太小。此外,穿过隧道氧化物的ΔVt与电场的关系在低电场(E <1 MV / cm)下显示平方根依赖性,而在高电场(E> 2.7 MV / cm)下显示平方根依赖性。这表明Poole-Frenkel效应是低场空穴发射和高场声子辅助隧穿的主要机理。

著录项

  • 来源
    《Applied Physics Letters》 |2014年第1期|1-4|共4页
  • 作者单位

    Department of Electrical Engineering and Computer Science (EECS), Institute Center for Microsystems–iMicro, Masdar Institute of Science and Technology, Abu Dhabi, United Arab Emirates|c|;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号