首页> 外文期刊>Applied Physics Letters >A GaN-SiC hybrid material for high-frequency and power electronics
【24h】

A GaN-SiC hybrid material for high-frequency and power electronics

机译:一种用于高频和电力电子的GaN-SiC杂化材料

获取原文
获取原文并翻译 | 示例

摘要

We demonstrate that 3.5% in-plane lattice mismatch between GaN (0001) epitaxial layers and SiC (0001) substrates can be accommodated without triggering extended defects over large areas using a grain-boundary-free AIN nucleation layer (NL). Defect formation in the initial epitaxial growth phase is thus significantly alleviated, confirmed by various characterization techniques. As a result, a high-quality 0.2-mu m thin GaN layer can be grown on the AIN NL and directly serve as a channel layer in power devices, like high electron mobility transistors (HEMTs). The channel electrons exhibit a state-of-the-art mobility of 2000 cm(2)/V-s, in the AlGaN/GaN heterostructures without a conventional thick C- or Fe-doped buffer layer. The highly scaled transistor processed on the heterostructure with a nearly perfect GaN-SiC interface shows excellent DC and microwave performances. A peak RF power density of 5.8 W/mm was obtained at V-DSQ = 40 V and a fundamental frequency of 30 GHz. Moreover, an unpassivated 0.2-mu m GaN/AIN/SiC stack shows lateral and vertical breakdowns at 1.5 kV. Perfecting the GaN-SiC interface enables a GaN-SiC hybrid material that combines the high-electron-velocity thin GaN with the high-breakdown bulk SiC, which promises further advances in a wide spectrum of high-frequency and power electronics. Published by AIP Publishing.
机译:我们证明,可以使用GaN(0001)外延层与SiC(0001)衬底之间的3.5%面内晶格失配,而无需使用无晶界的AIN成核层(NL)在大面积上触发扩展缺陷。因此,通过各种表征技术可以确认,初始外延生长阶段的缺陷形成得到了显着缓解。结果,可以在AIN NL上生长高质量的0.2μm薄GaN层,并直接用作功率器件中的沟道层,例如高电子迁移率晶体管(HEMT)。在没有常规的C或Fe掺杂的厚缓冲层的AlGaN / GaN异质结构中,沟道电子的最新迁移率> 2000 cm(2)/ V-s。在具有接近完美的GaN-SiC界面的异质结构上处理的高比例晶体管显示了出色的DC和微波性能。在V-DSQ = 40 V且基频为30 GHz时,可获得5.8 W / mm的峰值RF功率密度。此外,未经钝化的0.2微米GaN / AIN / SiC叠层在1.5 kV时出现横向和纵向击穿。完美的GaN-SiC界面使GaN-SiC混合材料能够将高电子速度的薄GaN与高击穿的块状SiC结合在一起,从而有望在宽范围的高频和电力电子领域取得更大的进步。由AIP Publishing发布。

著录项

  • 来源
    《Applied Physics Letters》 |2018年第4期|041605.1-041605.5|共5页
  • 作者单位

    SweGaN AB, Tekn Ringen 8D, SE-58330 Linkoping, Sweden;

    Chalmers Univ Technol, Dept Microtechnol & Nanosci, SE-41296 Gothenburg, Sweden;

    Linkoping Univ, Dept Phys Chem & Biol IFM, SE-58183 Linkoping, Sweden;

    SweGaN AB, Tekn Ringen 8D, SE-58330 Linkoping, Sweden;

    Chalmers Univ Technol, Dept Microtechnol & Nanosci, SE-41296 Gothenburg, Sweden;

    Linkoping Univ, Dept Phys Chem & Biol IFM, SE-58183 Linkoping, Sweden;

    Chalmers Univ Technol, Dept Microtechnol & Nanosci, SE-41296 Gothenburg, Sweden;

    SweGaN AB, Tekn Ringen 8D, SE-58330 Linkoping, Sweden;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号