首页> 外文期刊>Applied Physics Letters >Structural and electrical analysis of epitaxial 2D/3D vertical heterojunctions of monolayer MoS_2 on GaN
【24h】

Structural and electrical analysis of epitaxial 2D/3D vertical heterojunctions of monolayer MoS_2 on GaN

机译:GaN单层MoS_2外延2D / 3D垂直异质结的结构和电学分析

获取原文
获取原文并翻译 | 示例
       

摘要

Integration of two-dimensional (2D) and conventional (3D) semiconductors can lead to the formation of vertical heterojunctions with valuable electronic and optoelectronic properties. Regardless of the growth stacking mechanism implemented so far, the quality of the formed heterojunctions is susceptible to defects and contaminations mainly due to the complication involved in the transfer process. We utilize an approach that aims to eliminate the transfer process and achieve epitaxial vertical heterojunctions with low defect interfaces necessary for efficient vertical transport. Monolayers of MoS_2 of approximately 2 μm domains are grown epitaxially by powder vaporization on GaN substrates forming a vertical 2D/3D heterojunction. Cross-sectional transmission electron microscopy (XTEM) is employed to analyze the in-plane lattice constants and van der Waals (vdW) gap between the 2D and 3D semiconductor crystals. The extracted in-plane lattice mismatch between monolayer MoS_2 and GaN is only 1.2% which corresponds well to the expected mismatch between bulk MoS_2 and GaN. The vdW gap between MoS_2 and GaN, extracted from the XTEM measurements, is consistent with the vdW gap of 3.1 Å predicted by our first principles calculations. The effect of monolayer (1L) MoS_2 on the electrical characteristics of 2D/3D semiconductor heterojunctions was studied using conductive atomic force microscopy (CAFM). The electrical current across the CAFM-tip/1L-MoS_2/GaN vertical junctions is dominated by the tip/GaN interface of both n- and p-doped GaN. This electronic transparency of 1L-MoS_2 tells us that a 2D crystal component has to be above a certain thickness before it can serve as an independent semiconductor element in 2D/3D heterojunctions.
机译:二维(2D)和常规(3D)半导体的集成会导致形成具有有价值的电子和光电特性的垂直异质结。不管到目前为止采用哪种生长堆叠机制,形成的异质结的质量都容易受到缺陷和污染的影响,这主要是由于转移过程中涉及的复杂性。我们采用了一种旨在消除转移过程并实现具有有效垂直传输所必需的低缺陷界面的外延垂直异质结的方法。通过在GaN衬底上形成垂直2D / 3D异质结的粉末汽化,外延生长大约2μm域的MoS_2单层。截面透射电子显微镜(XTEM)用于分析2D和3D半导体晶体之间的面内晶格常数和范德华(vdW)间隙。单层MoS_2和GaN之间提取的面内晶格失配仅为1.2%,这与块状MoS_2和GaN之间的预期失配非常吻合。从XTEM测量中提取的MoS_2和GaN之间的vdW间隙与我们的第一个原理计算所预测的3.1Å的vdW间隙一致。使用导电原子力显微镜(CAFM)研究了单层(1L)MoS_2对2D / 3D半导体异质结的电学特性的影响。穿过CAFM-tip / 1L-MoS_2 / GaN垂直结的电流受n和p掺杂GaN的tip / GaN界面支配。 1L-MoS_2的这种电子透明性告诉我们,在2D / 3D异质结中2D晶体成分必须用作独立的半导体元件之前,它必须大于一定的厚度。

著录项

  • 来源
    《Applied Physics Letters》 |2017年第5期|051602.1-051602.5|共5页
  • 作者单位

    Sensors and Electron Devices Direc., U.S. Army Research Laboratory, Adelphi, MD, United States;

    Sensors and Electron Devices Direc., U.S. Army Research Laboratory, Adelphi, MD, United States;

    Sensors and Electron Devices Direc., U.S. Army Research Laboratory, Adelphi, MD, United States;

    Sensors and Electron Devices Direc., U.S. Army Research Laboratory, Adelphi, MD, United States;

    Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, United States;

    Department of Materials Science and Engineering, Center for Two-Dimensional and Layered Materials, Pennsylvania State University, University Park, PA, United States;

    Sensors and Electron Devices Direc., U.S. Army Research Laboratory, Adelphi, MD, United States;

    Weapons and Materials Research Direc., U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, United States;

    Weapons and Materials Research Direc., U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, United States;

    Weapons and Materials Research Direc., U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, United States;

    Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, United States;

    Department of Materials Science and Engineering, Center for Two-Dimensional and Layered Materials, Pennsylvania State University, University Park, PA, United States;

    Sensors and Electron Devices Direc., U.S. Army Research Laboratory, Adelphi, MD, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:14:11

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号