首页> 外文期刊>Applied Physics Letters >Laser-induced persistent photovoltage on the surface of a ternary topological insulator at room temperature
【24h】

Laser-induced persistent photovoltage on the surface of a ternary topological insulator at room temperature

机译:室温下激光在三元拓扑绝缘体表面上产生的持久光电压

获取原文
获取原文并翻译 | 示例

摘要

Using time- and angle-resolved photoemission, we investigate the ultrafast response of excited electrons in the ternary topological insulator (Bi_(1-x)Sb_x)_2Te_3 to fs-infrared pulses. We demonstrate that at the critical concentration x = 0.55, where the system becomes bulk insulating, a surface voltage can be driven at room temperature through the topological surface state solely by optical means. We further show that such a photovoltage persists over a time scale that exceeds ~6 µs, i.e, much longer than the characteristic relaxation times of bulk states. We attribute the origin of the photovoltage to a laser-induced band-bending effect which emerges near the surface region on ultrafast time scales. The photovoltage is also accompanied by a remarkable increase in the relaxation times of excited states as compared to undoped topological insulators. Our findings are relevant in the context of applications of topological surface states in future optical devices.
机译:使用时间和角度分辨的光发射,我们研究了三元拓扑绝缘体(Bi_(1-x)Sb_x)_2Te_3中激发电子对fs红外脉冲的超快响应。我们证明了在临界浓度x = 0.55时,系统变为整体绝缘,在室温下,仅通过光学手段就可以通过拓扑表面状态驱动表面电压。我们进一步表明,这种光电压在超过〜6 µs的时间范围内持续存在,即比体态的特征弛豫时间长得多。我们将光电压的起源归因于在超快时间尺度上在表面区域附近出现的激光诱导的带弯曲效应。与未掺杂的拓扑绝缘体相比,光电压还伴随着激发态弛豫时间的显着增加。我们的发现与拓扑表面状态在未来光学设备中的应用有关。

著录项

  • 来源
    《Applied Physics Letters》 |2017年第14期|141605.1-141605.5|共5页
  • 作者单位

    Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15,12489 Berlin, Germany;

    Institute of Solid State Physics, Vienna University of Technology, Vienna A-1040, Austria;

    Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15,12489 Berlin, Germany;

    Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15,12489 Berlin, Germany;

    Department of Chemistry, Moscow State University, Leninskie Gory 1/3, 119991, Moscow, Russia;

    Max-Born-Institut, Max-Born-Str. 2 A, 12489 Berlin, Germany;

    Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15,12489 Berlin, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号