首页> 外文期刊>Applied numerical mathematics >Orthonormal shifted discrete Legendre polynomials for solving a coupled system of nonlinear variable-order time fractional reaction-advection-diffusion equations
【24h】

Orthonormal shifted discrete Legendre polynomials for solving a coupled system of nonlinear variable-order time fractional reaction-advection-diffusion equations

机译:正交移位的离散传奇多项式,用于求解非线性可变阶时间分数分数反应 - 逆势 - 扩散方程的耦合系统

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we generalize a coupled system of nonlinear reaction-advection-diffusion equations to a variable-order fractional one by using the Caputo-Fabrizio fractional derivative, which is a non-singular fractional derivative operator. In order to establish an appropriate method for this system, we introduce a new formulation of the discrete Legendre polynomials namely the orthonormal shifted discrete Legendre polynomials. The operational matrices of classical and fractional derivatives of these basis functions are extracted. The devised method uses these polynomials and their operational matrices together with the collocation technique to transform the system under consideration into a system of algebraic equations which is uncomplicated for solving. Two numerical examples are analyzed to examine the accuracy of the method.
机译:在本文中,通过使用Caputo-Fabrizio分数衍生物,将非线性反应 - 平面扩散方程的耦合系统概括为可变阶分数衍生物,其是非奇异的分数衍生物算子。为了建立该系统的适当方法,我们介绍了分立的传奇多项式的新配方,即正常的移位离散的传说中多项式。提取这些基函数的经典和分数衍生物的操作矩阵。设计的方法使用这些多项式和操作矩阵以及搭配技术,以将所考虑的系统转换为对求解并复制的代数方程系统。分析了两个数值例子以检查方法的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号