首页> 外文期刊>Applied numerical mathematics >A meshless technique based on generalized moving least squares combined with the second-order semi-implicit backward differential formula for numerically solving time-dependent phase field models on the spheres
【24h】

A meshless technique based on generalized moving least squares combined with the second-order semi-implicit backward differential formula for numerically solving time-dependent phase field models on the spheres

机译:一种基于广义移动最小二乘的无网格技术与二阶半隐式向后差分公式组合,用于数值求解球体上的时间依赖的相位场模型

获取原文
获取原文并翻译 | 示例

摘要

In the current research paper, the generalized moving least squares technique is considered to approximate the spatial variables of two time-dependent phase field partial differential equations on the spheres in Cartesian coordinate. This is known as a direct approximation (it is the standard technique for generalized finite difference scheme [69,77]), and it can be applied for scattered points on each local sub-domain. The main advantage of this approach is to approximate the Laplace-Beltrami operator on the spheres using different types of distribution points simply, in which the studied mathematical models are involved. In fact, this scheme permits us to solve a given partial differential equation on the sphere directly without changing the original problem to a problem on a narrow band domain with pseudo-Neumann boundary conditions. A second-order semi-implicit backward differential formula (by adding a stabilized term to the chemical potential that is the second-order Douglas-Dupont-type regularization) is applied to approximate the temporal variable. We show that the time discretization considered here guarantees the mass conservation and energy stability. Besides, the convergence analysis of the proposed time discretization is given. The resulting fully discrete scheme of each partial differential equation is a linear system of algebraic equations per time step that is solved via an iterative method, namely biconjugate gradient stabilized algorithm. Some numerical experiments are presented to simulate the phase field Cahn-Hilliard, nonlocal Cahn-Hilliard (for diblock copolymers as microphase separation patterns) and crystal equations on the two-dimensional spheres.
机译:在当前的研究论文中,广义移动最小二乘技术被认为是近似笛卡尔坐标中的球体上的两个时间依赖相位偏微分方程的空间变量。这被称为直接近似(它是广义有限差分方案的标准技术[69,77]),并且可以应用于每个局部子域上的散射点。这种方法的主要优点是使用不同类型的分布点近似于使用不同类型的分布点的球体上的LAPLACH-BELTRAMI操作员,其中涉及研究的数学模型。事实上,该方案允许我们直接在球体上求解给定的部分微分方程,而不将原始问题改变为具有伪Neumann边界条件的窄带域上的问题。应用二阶半隐式向后差动公式(通过向二阶Douglas-Dupont型正则化的化学电位添加稳定的术语)以近似时间变量。我们表明,这里考虑的时间离散化保证了大规模保护和能量稳定性。此外,给出了所提出的时间离散化的收敛分析。所得到的每个部分微分方程的完全离散方案是通过迭代方法解决的每个时间步长的代数方程的线性系统,即双合谐酸梯度稳定算法。提出了一些数值实验以模拟Cahn-hilliard,非本山山脉,非峰Cahn-hilliard(用于二嵌段共聚物作为微单分离图案)和二维球体上的晶体方程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号