首页> 美国卫生研究院文献>other >Numerical aspects of anisotropic failure in soft biological tissues favor energy-based criteria: A rate-dependent anisotropic crack phase-field model
【2h】

Numerical aspects of anisotropic failure in soft biological tissues favor energy-based criteria: A rate-dependent anisotropic crack phase-field model

机译:软生物组织中各向异性破坏的数值方面支持基于能量的标准:速率相关的各向异性裂纹相场模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A deeper understanding to predict fracture in soft biological tissues is of crucial importance to better guide and improve medical monitoring, planning of surgical interventions and risk assessment of diseases such as aortic dissection, aneurysms, atherosclerosis and tears in tendons and ligaments. In our previous contribution (Gültekin et al., 2016) we have addressed the rupture of aortic tissue by applying a holistic geometrical approach to fracture, namely the crack phase-field approach emanating from variational fracture mechanics and gradient damage theories. In the present study, the crack phase-field model is extended to capture anisotropic fracture using an anisotropic volume-specific crack surface function. In addition, the model is equipped with a rate-dependent formulation of the phase-field evolution. The continuum framework captures anisotropy, is thermodynamically consistent and based on finite strains. The resulting Euler–Lagrange equations are solved by an operator-splitting algorithm on the temporal side which is ensued by a Galerkin-type weak formulation on the spatial side. On the constitutive level, an invariant-based anisotropic material model accommodates the nonlinear elastic response of both the ground matrix and the collagenous components. Subsequently, the basis of extant anisotropic failure criteria are presented with an emphasis on energy-based, Tsai–Wu, Hill, and principal stress criteria. The predictions of the various failure criteria on the crack initiation, and the related crack propagation are studied using representative numerical examples, i.e. a homogeneous problem subjected to uniaxial and planar biaxial deformations is established to demonstrate the corresponding failure surfaces whereas uniaxial extension and peel tests of an anisotropic (hypothetical) tissue deal with the crack propagation with reference to the mentioned failure criteria. Results favor the energy-based criterion as a better candidate to reflect a stable and physically meaningful crack growth, particularly in complex three-dimensional geometries with a highly anisotropic texture at finite strains.
机译:对于更好地指导和改善医学监测,外科手术计划以及对诸如主动脉夹层,动脉瘤,动脉粥样硬化以及肌腱和韧带撕裂等疾病的风险评估,深入理解以预测软生物组织中的骨折至关重要。在我们之前的研究中(Gültekin等人,2016),我们通过对骨折采用整体几何方法来解决主动脉组织的破裂问题,即由相变断裂力学和梯度损伤理论产生的裂缝相场方法。在本研究中,扩展了裂纹相场模型,以利用各向异性的体积比裂纹表面函数捕获各向异性的裂缝。此外,该模型配备了相位场演化的速率相关公式。连续体框架捕获各向异性,在热力学上是一致的并且基于有限应变。所得的Euler-Lagrange方程通过在时间侧的算子分解算法求解,该算法由空间侧的Galerkin型弱公式产生。在本构层次上,基于不变性的各向异性材料模型可适应基础基质和胶原成分的非线性弹性响应。随后,提出了现存的各向异性破坏准则的基础,重点是基于能量的,蔡-吴,希尔和主应力准则。使用代表性的数值示例研究了各种裂纹准则在裂纹萌生方面的预测以及相关的裂纹扩展,即建立了经受单轴和平面双轴变形的均匀问题,以证明相应的破坏面,而单轴拉伸和剥离试验各向异性(假想的)组织参考上述破坏准则处理裂纹扩展。结果支持基于能量的判据,作为反映稳定且物理意义上的裂纹扩展的更好候选者,尤其是在有限应变下具有高度各向异性织构的复杂三维几何体中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号