首页> 外文期刊>Applied numerical mathematics >Spectral stability of travelling wave solutions in a Keller-Segel model
【24h】

Spectral stability of travelling wave solutions in a Keller-Segel model

机译:Keller-Segel模型中行波解的谱稳定性

获取原文
获取原文并翻译 | 示例

摘要

We investigate the point spectrum associated with travelling wave solutions in a Keller-Segel model for bacterial chemotaxis with small diffusivity of the chemoattractant, a logarithmic chemosensitivity function and a constant, sublinear or linear consumption rate. We show that, for constant or sublinear consumption, there is an eigenvalue at the origin of order two. This is associated with the translation invariance of the model and the existence of a continuous family of solutions with varying wave speed. These point spectrum results, in conjunction with previous results in the literature, imply that in these cases the travelling wave solutions are absolute unstable if the chemotactic coefficient is above a certain critical value, while they are transiently unstable otherwise. (C) 2018 IMACS. Published by Elsevier B.V. All rights reserved.
机译:我们研究了与Keller-Segel模型中与细菌趋化性具有较小扩散性,对数化学敏感性函数和恒定,亚线性或线性消耗速率的细菌趋化性相关的行波解的点谱。我们表明,对于恒定或亚线性消耗,在二阶原点处有一个特征值。这与模型的平移不变性以及波速不断变化的连续解的存在有关。这些点谱结果与文献中的先前结果相结合,意味着在这些情况下,如果趋化系数高于某个临界值,则行波解是绝对不稳定的,否则它们将是暂时不稳定的。 (C)2018年IMACS。由Elsevier B.V.发布。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号