首页> 外文期刊>Applied numerical mathematics >On the optimal selection of the linear operator and the initial approximation in the application of the homotopy analysis method to nonlinear fractional differential equations
【24h】

On the optimal selection of the linear operator and the initial approximation in the application of the homotopy analysis method to nonlinear fractional differential equations

机译:同伦分析方法在非线性分数阶微分方程中的应用和线性近似的最优选择

获取原文
获取原文并翻译 | 示例

摘要

In this study, an optimal homotopy analysis approach will be described to deal with nonlinear fractional differential equations. The proposed approach presents a procedure to find an optimal auxiliary linear operator and the corresponding optimal initial approximation that will accelerate the convergence of series solutions for nonlinear differential equations with fractional derivatives. Then, a reliable modified version of the homotopy analysis method is presented to facilitate the calculations. Numerical comparison will be made to examine the computational efficiency and the pertinent features of the proposed algorithm. This algorithm is expected to be further employed to solve wide classes of nonlinear problems in fractional calculus. (C) 2018 IMACS. Published by Elsevier B.V. All rights reserved.
机译:在这项研究中,将描述一种最优的同伦分析方法来处理非线性分数阶微分方程。所提出的方法提出了寻找最优辅助线性算子和相应的最优初始逼近的过程,该过程将加速具有分数阶导数的非线性微分方程的级数解的收敛。然后,提出了一种可靠的同型分析方法的改进版本,以方便计算。数值比较将检查算法的计算效率和相关特征。该算法有望进一步用于解决分数阶微积分中的各种非线性问题。 (C)2018年IMACS。由Elsevier B.V.发布。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号