首页> 外文期刊>Applied numerical mathematics >Strong stability of singly-diagonally-implicit Runge-Kutta methods
【24h】

Strong stability of singly-diagonally-implicit Runge-Kutta methods

机译:单对角隐Runge-Kutta方法的强稳定性

获取原文
获取原文并翻译 | 示例

摘要

This paper deals with the numerical solution of initial value problems, for systems of ordinary differential equations, by Runge-Kutta methods (RKMs) with special nonlinear stability properties indicated by the terms total-variation-diminishing (TVD), strongly stable and monotonic. Stepsize conditions, guaranteeing these properties, were studied earlier, see e.g. Shu and Osher [C.-W. Shu, S. Osher, J. Comput. Phys. 77 (1988) 439-471], Gottlieb et al. [S. Gottlieb, C.-W. Shu, E. Tadmor, SIAM Rev. 43 (2001) 89-112], Hundsdorfer and Ruuth [W.H. Hundsdorfer, S.J. Ruuth, Monotonicity for time discretizations, in: D.F. Griffiths, G.A. Watson (Eds.), Proc. Dundee Conference 2003, Report NA/217, Univ. Dundee, 2003, pp. 85-94], Higueras [I. Higueras, J. Sci. Computing 21 (2004) 193-223; I. Higueras, SIAM J. Numer. Anal. 43 (2005) 924-948], Gottlieb [S. Gottlieb, J. Sci. Computing 25 (2005) 105-128], Ferracina and Spijker [L. Ferracina, M.N. Spijker, SIAM J. Numer. Anal. 42 (2004) 1073-1093; L. Ferracina, M.N. Spijker, Math. Comp. 74 (2005) 201-219].rnSpecial attention was paid to RKMs which are optimal, in that the corresponding stepsize conditions are as little restrictive as possible within a given class of methods. Extensive searches for such optimal methods were made in classes of explicit RKMs, see e.g. Gottlieb and Shu [S. Gottlieb, C.-W. Shu, Math. Comp. 67 (1998) 73-85], Spiteri and Ruuth [R.J. Spiteri, S.J. Ruuth, SIAM J. Numer. Anal. 40 (2002) 469-491; R.J. Spiteri, S.J. Ruuth, Math. Comput. Simulation 62 (2003) 125-135], Ruuth [S.J. Ruuth, Math. Comp. 75 (2006) 183-207].rnIn the present paper we search for methods that are optimal in the above sense, within the interesting class of singly-diagonally-implicit Runge-Kutta (SDIRK) methods, with s stages and order p. Some methods, with 1 ≤ p ≤ 4, are proved to be optimal, whereas others are obtained by a numerical search. We present closed-form expressions for two families of SDIRK methods (with s ≥ 3) which we conjecture to be optimal for p = 2 and p = 3, respectively. Furthermore we prove, for strongly stable SDIRK methods, the order barrier p ≤ 4.rnWe perform numerical experiments, to compare the theoretical properties of various optimal SDIRK methods to the actual TVD properties in the solution of a nonlinear test equation, the 1-dimensional Buckley-Leverett equation.
机译:本文利用具有特殊非线性稳定性能的Runge-Kutta方法(RKM)处理常微分方程组初值问题的数值解,用总变差递减(TVD)术语表示,该函数具有很强的稳定性和单调性。较早研究了保证这些特性的步长条件,例如Shu和Osher [C.-W. Shu,S.Osher,J.Comput。物理77(1988)439-471],Gottlieb等。 [S.戈特利布(C.-W. Shu,E.Tadmor,SIAM Rev.43(2001)89-112],Hundsdorfer and Ruuth [W.H. Hundsdorfer,S.J. Ruuth,时间离散的单调性,见:D.F。格里菲斯(Griffiths)沃森(编辑),过程2003年邓迪会议,报告NA / 217,大学。 Dundee,2003,第85-94页],Higueras [I. Higueras,J。Sci。计算21(2004)193-223; I. Higueras,SIAM J. Numer。肛门43(2005)924-948],Gottlieb [S. Gottlieb,J。科学。计算25(2005)105-128],Ferracina和Spijker [L.新泽西州费拉西纳Spijker,SIAM J. Numer。肛门42(2004)1073-1093; L.费拉西纳(M.N. Spijker,数学。比较74(2005)201-219] .rn特别注意了最佳的RKM,因为在给定的方法类别中,相应的步长条件对约束的限制尽可能小。在显式RKM类中对此类最佳方法进行了广泛搜索,请参见例如Gottlieb和Shu [S.戈特利布(C.-W.淑数学比较67(1998)73-85],斯皮特里和鲁斯[R.J. Spiteri,S.J. Ruuth,SIAM J. Numer。肛门40(2002)469-491;罗杰Spiteri,S.J.露丝,数学。计算Simulation 62(2003)125-135],Ruuth [S.J.露丝,数学。比较75(2006)183-207] .rn在本文中,我们在有趣的单对角隐式Runge-Kutta(SDIRK)方法类别中搜索了具有上述意义的最佳方法,这些方法具有s阶和阶p。 1≤p≤4的某些方法被证明是最佳方法,而其他方法是通过数值搜索获得的。我们提供了两个SDIRK方法系列(s≥3)的闭式表达式,我们推测它们分别对于p = 2和p = 3是最优的。此外,对于强稳定的SDIRK方法,我们证明了有序势垒p≤4.rn我们进行了数值实验,以比较各种最优SDIRK方法的理论特性与非线性测试方程(一维)解中的实际TVD特性。 Buckley-Leverett方程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号