首页> 外文期刊>Applied numerical mathematics >Functionally Fitted Explicit Pseudo Two-step Runge-kutta Methods
【24h】

Functionally Fitted Explicit Pseudo Two-step Runge-kutta Methods

机译:功能拟合的显式伪两步Runge-kutta方法

获取原文
获取原文并翻译 | 示例

摘要

Explicit pseudo two-step Runge-Kutta (EPTRK) methods belong to the wider class of general linear multistep methods. The particularity of EPTRK methods is that they do not use the last two iterates as conventional two-step methods do. Rather, they predict the intermediate stage values and combine them with the last iterate to obtain the next iterate. EPTRK methods were initially designed to suit parallel computers, but they have been shown to achieve arbitrary high-order and thus can be useful as conventional explicit RK methods on sequential computers as well. Our contribution in this paper is to present a new family of functionally fitted EPTRK methods aimed at integrating an equation exactly if its solution is a linear combination of a chosen set of basis functions. We use a variation of collocation techniques to show that this new family, which we call FEPTRK, shares the same accuracy properties as EPTRK. The added advantage is that FEPTRK can use specific fitting functions to capitalize on the special properties of the problem that may be known in advance.
机译:显式伪两步Runge-Kutta(EPTRK)方法属于广义线性多步方法的一类。 EPTRK方法的特殊之处在于,它们不像常规的两步方法那样使用最后两个迭代。而是,它们预测中间阶段的值,并将它们与最后一个迭代组合,以获得下一个迭代。 EPTRK方法最初是为适合并行计算机而设计的,但已证明它们可以实现任意高阶,因此也可以用作顺序计算机上的常规显式RK方法。如果本文的解决方案是一组选定的基础函数的线性组合,则我们在本文中的贡献是提出了一系列新的函数拟合的EPTRK方法,旨在精确地积分方程。我们使用多种搭配技术来显示这个新系列(我们称为FEPTRK)与EPTRK具有相同的精度属性。另一个优点是FEPTRK可以使用特定的拟合函数来利用可能事先已知的问题的特殊属性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号