首页> 外文期刊>Applied numerical mathematics >A Hamilton-Jacobi-Bellman approach to optimal trade execution
【24h】

A Hamilton-Jacobi-Bellman approach to optimal trade execution

机译:汉密尔顿-雅各比-贝尔曼的最优交易执行方法

获取原文
获取原文并翻译 | 示例

摘要

The optimal trade execution problem is formulated in terms of a mean-variance tradeoff, as seen at the initial time. The mean-variance problem can be embedded in a linear-quadratic (LQ) optimal stochastic control problem. A semi-Lagrangian scheme is used to solve the resulting nonlinear Hamilton-Jacobi-Bellman (HJB) PDE. This method is essentially independent of the form for the price impact functions. Provided a strong comparison property holds, we prove that the numerical scheme converges to the viscosity solution of the HJB PDE. Numerical examples are presented in terms of the efficient trading frontier and the trading strategy. The numerical results indicate that in some cases there are many different trading strategies which generate almost identical efficient frontiers.
机译:最佳交易执行问题是根据初始时的均值-方差折衷制定的。均方差问题可以嵌入到线性二次(LQ)最优随机控制问题中。半拉格朗日方案用于求解所得的非线性Hamilton-Jacobi-Bellman(HJB)PDE。该方法基本上与价格影响函数的形式无关。在保持强比较性质的前提下,我们证明了该数值格式收敛于HJB PDE的粘度解。根据有效的交易边界和交易策略给出了数值示例。数值结果表明,在某些情况下,存在许多产生几乎相同的有效边界的不同交易策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号