首页> 外文期刊>Applied numerical mathematics >Two regularization methods to identify a space-dependent source for the time-fractional diffusion equation
【24h】

Two regularization methods to identify a space-dependent source for the time-fractional diffusion equation

机译:两种正则化方法来确定时间分数扩散方程的空间相关源

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the inverse problem of identifying a space-dependent source for the time-fractional diffusion equation is investigated. Such a problem is obtained from the classical diffusion equation in which the time derivative is replaced with a Caputo derivative of order α ∈ (0,1]. We show that such a problem is ill-posed and apply the Tikhonov regularization method and a simplified Tikhonov regularization method to solve it based on the solution given by the separation of variables. Convergence estimates are presented under an a priori parameter choice rule and an a posteriori parameter choice rule, respectively. Finally, numerical examples are given to show that the regularization methods are effective and stable.
机译:在本文中,研究了识别时间分数扩散方程的空间相关源的反问题。这个问题是从经典的扩散方程中得到的,在经典的扩散方程中,时间导数被替换为α∈(0,1]的Caputo导数。基于变量分离给出的解的Tikhonov正则化方法,分别在先验参数选择规则和后验参数选择规则下给出收敛估计,最后通过数值算例说明了该正则化方法是有效和稳定的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号