首页> 外文期刊>Applied numerical mathematics >On the construction of second derivative diagonally implicit multistage integration methods for ODEs
【24h】

On the construction of second derivative diagonally implicit multistage integration methods for ODEs

机译:ODEs的二阶导数对角隐式多级积分方法的构造

获取原文
获取原文并翻译 | 示例

摘要

Second derivative diagonally implicit multistage integration methods (SDIMSIMs) as a subclass of second derivative general linear methods (SGLMs) have been divided into four types, depending on the nature of the differential system to be solved and the computer architecture that is used to implement these methods. In this paper, we describe the construction of SDIMSIMs for all types with Runge-Kutta stability property. Examples of (p,q,r,s) SDIMSIMs are given with p = q = r = s≤4, where p is the order, q is the stage order, r is the number of external stages, and s is the number of internal stages of the method. Efficiency of the constructed methods is shown by numerical experiments.
机译:作为二阶导数一般线性方法(SGLM)的子类,二阶导数对角隐式多级积分方法(SDIMSIM)已分为四种类型,具体取决于要解决的微分系统的性质以及用于实现这些方法的计算机体系结构方法。在本文中,我们描述了具有Runge-Kutta稳定性的所有类型的SDIMSIM的构造。给出(p,q,r,s)SDIMSIM的示例,其中p = q = r =s≤4,其中p是阶数,q是阶段阶数,r是外部阶段数,s是数目该方法的内部阶段。数值实验表明了所建方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号