首页> 外文期刊>Applied numerical mathematics >Transformed implicit-explicit second derivative diagonally implicit multistage integration methods with strong stability preserving explicit part
【24h】

Transformed implicit-explicit second derivative diagonally implicit multistage integration methods with strong stability preserving explicit part

机译:具有强大稳定性保存明确部件的隐式显式二阶衍生对角隐式多级集成方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we discuss the construction of a class of implicit-explicit (IMEX) methods for systems of ordinary differential equations which their right hand side can be split into two parts; nonstiff or mildly stiff part and stiff part. The proposed methods treat the non-stiff part by an explicit second derivative diagonally implicit multistage integration method (SDIMSIM) and the stiff part by an implicit diagonally implicit multistage integration method (DIMSIM). The explicit part of these methods has strong stability preserving (SSP) property and the implicit part is A- and L-stable. We will construct methods with p = q = r = s and p = q +1 =r = s up to order four with large SSP coefficients with respect to the large region of absolute stability, assuming that the implicit part of the method has Runge-Kutta stability (RKS) property together with A- and L-stability. These methods are tested on the linear advection-diffusion, advection-reaction and nonlinear shallow water equations, and the numerical results are presented conforming the efficiency and order of constructed methods.
机译:在本文中,我们讨论了一类隐式显式(IMEX)方法的构建,用于普通的微分方程系统,它们的右侧可以分为两部分;非抗议或温和的刚性部分和刚性部分。所提出的方法通过明确的第二衍生对角线隐式多级积分方法(SDIMSIM)和刚性部分通过隐式对角隐式多级集成方法(DiMsim)来处理非刚性部分。这些方法的显式部分具有强稳定性保存(SSP)属性,隐式部件是A-和L稳定的。我们将用p = q = r = s和p = +1 = r = s构造方法,并且对于具有大的绝对稳定性的大区域的大SSP系数的顺序四,假设该方法的隐式部分具有速度-Kutta稳定性(RKS)属性与A和L稳定性一起。这些方法在线性的平流扩散,前进反应和非线性浅水方程测试,并且呈现了构造方法的效率和顺序的数值结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号