首页> 外文期刊>Applied Mathematical Modelling >Design of a combined wind speed forecasting system based on decomposition-ensemble and multi-objective optimization approach
【24h】

Design of a combined wind speed forecasting system based on decomposition-ensemble and multi-objective optimization approach

机译:基于分解集合的组合风速预测系统设计与多目标优化方法

获取原文
获取原文并翻译 | 示例

摘要

Wind-speed forecasting plays an important role in the efficient utilization of wind energy. However, accurate and stable forecasting of wind-speed series is challenging, considering the nonlinearity and chaotic characteristics of wind. Moreover, the limitations of individual forecasting models are ignored, which invariably leads to poor forecasting precision. Therefore, here, a wind-speed forecasting system based on two types of machine learning approaches (decomposition-ensemble and multi-objective optimization) is proposed, which addresses the nonlinearity and chaotic characteristics of wind-speed series well. In this system, the advanced optimization algorithm and no negative constraint theory determine the weights of results decomposed and forecasted by the sub-models. An empirical study using 10 min and 30 min interval datasets shows that the combined forecasting system outperforms comparison models and has advantages for wind-speed forecasting.
机译:风速预测在有效利用风能的情况下起着重要作用。然而,考虑到风的非线性和混乱特征,对风速系列的准确和稳定的预测是挑战性的。此外,忽略了个别预测模型的局限性,这总是导致预测精度不佳。因此,提出了一种基于两种类型的机器学习方法(分解集合和多目标优化)的风速预测系统,这解决了风速系列的非线性和混沌特性。在该系统中,高级优化算法和没有负约束理论决定了子模型分解和预测的结果的权重。使用10分钟和30分钟间隔数据集的经验研究表明,组合的预测系统优于比较模型,具有风速预测的优点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号