首页> 外文期刊>Expert systems with applications >Ensemble forecasting system for short-term wind speed forecasting based on optimal sub-model selection and multi-objective version of mayfly optimization algorithm
【24h】

Ensemble forecasting system for short-term wind speed forecasting based on optimal sub-model selection and multi-objective version of mayfly optimization algorithm

机译:基于最优子模型选择和Maysfly优化算法的多目标版本的短期风速预测集合预测系统

获取原文
获取原文并翻译 | 示例

摘要

Wind energy has attracted considerable attention in the past decades as a low-carbon, environmentally friendly, and efficient renewable energy. However, the irregularity of wind speed makes it difficult to integrate wind energy into smart grids. Thus, achieving credible and effective wind speed forecasting results is crucial for the operation and management of wind energy. In this study, we propose an ensemble forecasting system that integrates data decomposition technology, sub-model selection, a novel multi-objective version of the Mayfly algorithm, and different predictors to better demonstrate the stochasticity and fluctuation of wind speed data. After decomposition using the data decomposition technology, each decomposed wind speed series is considered as the input to multiple predictors, from which the optimal forecasting model for each sub-series is determined based on sub-model selection. To obtain reliable forecasting results, a novel multi-objective version of the Mayfly algorithm is proposed to estimate the optimal weight coefficients for integrating the forecasting values of the subseries. Based on three experiments and four analyses, the proposed ensemble system is verified as effective for obtaining accurate and stable point forecasting and interval forecasting performances, thus aiding in the planning and dispatching of power grids.
机译:在过去的几十年中,风能引起了相当大的关注,作为低碳,环保和高效的可再生能源。然而,风速的不规则使得难以将风能整合到智能电网中。因此,实现可信和有效的风速预测结果对于风能的运营和管理至关重要。在这项研究中,我们提出了一个集成的集成预测系统,该系统集成了数据分解技术,子模型选择,新型多目标版本的Mayshy算法,以及不同的预测因子,以更好地证明风速数据的随机性和波动。在使用数据分解技术分解之后,每个分解的风速系列被认为是对多个预测器的输入,基于子模型选择确定每个子系列的最佳预测模型。为了获得可靠的预测结果,提出了一种新的多目标版本的MayShy算法,以估计用于集成子系列预测值的最佳权重系数。基于三次实验和四次分析,所提出的集合系统被验证有效地获得准确和稳定的点预测和间隔预测性能,从而有助于提供电网的规划和调度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号