首页> 外文期刊>Applied Mathematical Modelling >Stability and convergence of multistep schemes for 1D and 2D fractional model with nonlinear source term
【24h】

Stability and convergence of multistep schemes for 1D and 2D fractional model with nonlinear source term

机译:非线性源期限1D和2D分数模型多步和2D分数模型的稳定性和融合

获取原文
获取原文并翻译 | 示例

摘要

Stable multistep schemes based on Caputo fractional derivative approximation are presented for solving 1D and 2D nonlinear fractional model arising from dielectric media. We approximate Caputo fractional derivatives in time with a multistep scheme of order O(τ~(3-α)) & O(τ~(3-β)). 1 < β < α < 2. spatial Laplacian operator with a central difference scheme, and nonlinear source term g(β) by using Taylor series. The discretization of the problem results in a linear system of equations that is tridiagonal and penta-diagonal for 1D and 2D case, respectively. The unique solvability and unconditional stability are derived for both cases. The convergence of schemes is established with the help of optimal error bounds. Further, we establish that the order of convergence for 1D case is O(τ~(3-α) + τ~(3-β) + h~2) and for 2D case is O(τ~(3-α) + τ~(3-β) + h_x~2 + h_y~2). Moreover, the stability of our schemes are verified numerically by adding some linear and nonlinear noisy inputs. Finally, four test functions are investigated to show the effectiveness and stability of our schemes. The method is simple, easy to implement, and yields very accurate results.
机译:基于Caputo分数衍生物近似的稳定多步骤方案用于求解由介电介质产生的1D和2D非线性分数模型。我们将Caputo分数衍生物及时近似,用OR(τ〜(3-α))&O(τ〜(3-β))的多步骤方案。 1 <β<α<2.使用泰勒序列具有中心差分方案的空间拉普拉斯算子和非线性源术语G(β)。问题的离散化导致分别是具有1D和2D壳体的三角形和五角形对角线的线性系统。两种情况都导出了独特的可解性和无条件稳定性。在最佳误差范围的帮助下建立方案的收敛。此外,我们建立了1D案例的收敛顺序是O(τ〜(3-α)+τ〜(3-β)+ H〜2)和2D情况是O(τ〜(3-α)+ τ〜(3-β)+ h_x〜2 + h_y〜2)。此外,通过添加一些线性和非线性噪声输入来验证我们的方案的稳定性。最后,调查了四项测试功能,以显示我们计划的有效性和稳定性。该方法简单,易于实现,产生非常准确的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号