首页> 外文期刊>Applied Mathematical Modelling >Elastic stress analysis of blunt V-notches under mixed mode loading by considering higher order terms
【24h】

Elastic stress analysis of blunt V-notches under mixed mode loading by considering higher order terms

机译:考虑高阶项的混合模式载荷下钝V形槽口的弹性应力分析

获取原文
获取原文并翻译 | 示例

摘要

This paper presents the in-plane asymptotic displacement and stress fields for blunt V-notched components based on Kolosov-Muskhelishvili's approach. In the first part, the displacement and stress components in the polar coordinate system are determined by choosing appropriate complex potential functions. In order to construct the notch geometry, the Neuber's mapping relation is utilized. Then, the notch boundary conditions are imposed to calculate the free parameters of the stress distribution. Eventually, the stress and displacement components are calculated in the Cartesian and polar coordinates in the forms of series expansion. In the second part, the coefficients of series expansions are computed by using the least square method (LSM). The blunt V-notched Brazilian disk (BV-BD) specimen under mixed mode loading is used as an example to verify the proposed procedure. The stress components in arbitrary distances and directions are determined for different blunt V-notches in order to evaluate the accuracy of the calculated stress series solutions and their associated coefficients. The numerical results indicate that a single-term solution can lead to considerable errors, and to achieve good accuracy in the stress field calculation, one should take account of at least three terms in the stress series solution. (C) 2019 Elsevier Inc. All rights reserved.
机译:本文提出了基于Kolosov-Muskhelishvili方法的钝V形缺口构件的面内渐近位移和应力场。在第一部分中,通过选择适当的复数势函数来确定极坐标系中的位移分量和应力分量。为了构造凹口几何形状,利用了诺伊伯的映射关系。然后,施加缺口边界条件以计算应力分布的自由参数。最终,应力和位移分量在笛卡尔坐标系和极坐标系中以级数展开的形式进行计算。在第二部分中,使用最小二乘法(LSM)计算级数展开的系数。以混合模式加载下的钝V形巴西圆盘(BV-BD)标本为例来验证所提出的程序。为不同的钝V形槽确定沿任意距离和方向的应力分量,以便评估所计算应力序列解及其相关系数的准确性。数值结果表明,单项解可能会导致相当大的误差,并且要在应力场计算中获得良好的精度,应在应力序列解中至少考虑三项。 (C)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号