首页> 外文期刊>Applied Mathematical Modelling >Developing optimization & robust models for a mixed-model assembly line balancing problem with semi-automated operations
【24h】

Developing optimization & robust models for a mixed-model assembly line balancing problem with semi-automated operations

机译:为具有半自动化操作的混合模型装配线平衡问题开发优化和鲁棒模型

获取原文
获取原文并翻译 | 示例

摘要

In this study, we present two new mathematical models for mixed-model assembly line balancing. The line is semi-automated and characterized by various alternative formats for the operations performed, which range from human operators and assisting robots to robotics solutions, where the operators may have different skill levels and operators on adjacent stations may cooperate. Given the cycle time, the first model minimizes the fixed and variable costs associated with setting up the assembly line. However, the second mathematical model involves a cycle time, which is variable and it changes between a lower bound and an upper bound. These bounds reflect the expected future changes in demand. The objective is to minimize both the costs and the cycle time. To obtain more accurate and reliable results, we present a robust solution for the different confidence levels (alpha) determined by managers. To verify the mathematical models, we considered different test problems and compared the robust solutions under three different conditions. The results showed that the robust modeling approach obtains a more reliable design than the traditional cost trade-off alone. The model allows decision makers to select assembly operations based on a better understanding of their decision impacts in both the short term and long term under conditions of demand uncertainty. (C) 2019 Elsevier Inc. All rights reserved.
机译:在这项研究中,我们提出了两种用于混合模型装配线平衡的新数学模型。该生产线是半自动化的,其特点是执行操作的各种替代格式,范围从人类操作员和辅助机器人到机器人解决方案,在这些解决方案中,操作员可能具有不同的技能水平,相邻站点上的操作员可以合作。给定周期时间,第一个模型将与建立装配线相关的固定成本和可变成本降至最低。但是,第二个数学模型涉及一个循环时间,该时间是可变的,并且它在下限和上限之间变化。这些界限反映了预期的未来需求变化。目的是最小化成本和周期时间。为了获得更准确和可靠的结果,我们提出了针对经理确定的不同置信度(alpha)的可靠解决方案。为了验证数学模型,我们考虑了不同的测试问题,并比较了三种不同条件下的鲁棒解决方案。结果表明,与单纯的传统成本权衡相比,鲁棒的建模方法可获得更可靠的设计。该模型允许决策者在需求不确定的情况下,基于对短期和长期决策影响的更好理解来选择组装业务。 (C)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号