首页> 外文期刊>Applied Mathematical Modelling >High resolution multi-moment finite volume method for supersonic combustion on unstructured grids
【24h】

High resolution multi-moment finite volume method for supersonic combustion on unstructured grids

机译:非结构网格超音速燃烧的高分辨率多矩有限体积方法

获取原文
获取原文并翻译 | 示例

摘要

In this study, we present a novel numerical model for simulating detonation waves on unstructured grids. In contrast to the conventional finite volume method (FVM), two types of moment comprising the volume-integrated average (VIA) and the point value (PV) at the cell vertex are treated as the evolution variables for the reacting Euler equations. The VIA is computed based on a finite volume formulation of the flux form where the conventional Riemann problem is solved by the HLLC Riemann solver. The PV is updated in a point-wise manner by using the differential formulation where the Roe solver is used to compute the differential Riemann problems. In order to increase the accuracy around discontinuities, numerical oscillations and dissipations are reduced using the boundary variation diminishing algorithm. Convergence tests demonstrated that the proposed model could achieve third-order accuracy with unstructured grids for reacting Euler equations. The high resolution property of the proposed method was verified based on simulations of several detonation wave propagation problems in two and three dimensions. In particular, the current model could resolve the cellular structures with fewer degrees of freedom for the unstable oblique detonation wave problem. These fine structures may be smoothed out by the conventional FVM due to the excessive amount of numerical dissipation errors. Importantly, a simulation of stiff detonation waves showed that the proposed method could capture the correct position of the reaction front whereas the conventional FVMs produced spurious phenomena. Thus, the proposed model can obtain highly accurate solutions for detonation problems on unstructured grids, which is highly advantageous for real applications involving complex geometrical configurations.
机译:在这项研究中,我们提出了一种新型的数值模型,用于模拟非结构化网格上的爆轰波。与常规的有限体积方法(FVM)相比,将单元顶点处的体积积分平均值(VIA)和点值(PV)两种类型的矩视为反应欧拉方程的演化变量。基于通量形式的有限体积公式计算VIA,其中通过HLLC Riemann求解器解决常规Riemann问题。通过使用Roe求解器计算差分Riemann问题的差分公式,以逐点方式更新PV。为了提高不连续点附近的精度,使用边界变化减小算法来减少数值振荡和耗散。收敛性测试表明,所提出的模型可以在非结构化网格上实现欧拉方程的三阶精度。通过对二维和三维中多个爆轰波传播问题的仿真,验证了该方法的高分辨率特性。特别是,当前模型可以解决不稳定倾斜爆轰波问题的自由度较小的蜂窝结构。由于大量的数值耗散误差,这些精细结构可以通过常规FVM进行平滑处理。重要的是,对强爆震波的仿真表明,所提出的方法可以捕获反应前沿的正确位置,而常规FVM会产生伪现象。因此,提出的模型可以为非结构化网格上的爆震问题获得高度精确的解决方案,这对于涉及复杂几何构造的实际应用非常有优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号