首页> 外文期刊>Applied Mathematical Modelling >Rational pseudospectral approximation to the solution of a nonlinear integro-differential equation arising in modeling of the population growth
【24h】

Rational pseudospectral approximation to the solution of a nonlinear integro-differential equation arising in modeling of the population growth

机译:人口增长建模中非线性积分-微分方程解的有理拟谱逼近

获取原文
获取原文并翻译 | 示例

摘要

Pseudospectral approach based on rational Legendre and rational Chebyshev functions is developed to solve the nonlinear integro-differential Volterra's population model. The model includes an integral term that characterizes accumulated toxicity on the species in addition to the terms of the logistic equation. Since the equation is defined on positive real line, the rational Legendre and the rational Chebyshev functions are used to approximate the unknown function. The approach reduces the solution of the main problem to the solution of a system of nonlinear algebraic equations. The obtained results represent the exponential convergence of the new method, so it can be applied on a wide variety of problems.
机译:提出了基于有理勒让德和有理切比雪夫函数的伪谱方法,以求解非线性积分-微分沃尔泰拉种群模型。除了逻辑方程式的项外,该模型还包括一个积分项,用于描述物种累积的毒性。由于方程是在正实线上定义的,因此有理勒让德和有理切比雪夫函数可用于近似未知函数。该方法将主要问题的解决方案简化为非线性代数方程组的解决方案。所获得的结果代表了新方法的指数收敛性,因此可以应用于各种各样的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号