首页> 外文期刊>Applied Mathematical Modelling >Bio-inspired computing platform for reliable solution of Bratu-type equations arising in the modeling of electrically conducting solids
【24h】

Bio-inspired computing platform for reliable solution of Bratu-type equations arising in the modeling of electrically conducting solids

机译:受生物启发的计算平台,可对导电固体建模中的Bratu型方程式进行可靠的求解

获取原文
获取原文并翻译 | 示例

摘要

In this study, a bio-inspired computing approach is developed to solve Bratu-type equations arising in modeling of electrically conducting solids and various other physical phenomena. We employ feed-forward artificial neural networks (ANN) optimized with genetic algorithm (GA) and the active-set method (ASM). The mathematical formulation consists of an ANN with an unsupervised error, which is minimized by tuning weights of the network. The evolutionary technique based on GAs is used as a tool for global search of the weights in conjunction with the ASM for rapid local convergence. The designed methodology is applied to solve a number of initial and boundary value problems based on Bratu equations. Monte Carlo simulations and their statistical analyses are used to validate accuracy, convergence and effectiveness of the scheme. Comparison of results is made with exact solutions, the fully explicit Runge-Kutta numerical method, and other reported solutions of analytical and numerical solvers to establish correctness of the designed scheme.
机译:在这项研究中,开发了一种以生物为灵感的计算方法来解决在建模导电固体和各种其他物理现象时出现的Bratu型方程。我们采用经过遗传算法(GA)和主动集方法(ASM)优化的前馈人工神经网络(ANN)。数学公式由具有无监督误差的ANN组成,可通过调整网络权重将其最小化。基于遗传算法的进化技术与ASM一起用作权重全局搜索的工具,用于快速局部收敛。设计的方法论可用于解决基于Bratu方程的许多初始值和边值问题。蒙特卡洛模拟及其统计分析用于验证该方案的准确性,收敛性和有效性。使用精确解,完全明确的Runge-Kutta数值方法以及分析和数值求解器的其他已报告解决方案进行结果比较,从而确定设计方案的正确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号