首页> 美国卫生研究院文献>Frontiers in Neuroscience >Comparing Neuromorphic Solutions in Action: Implementing a Bio-Inspired Solution to a Benchmark Classification Task on Three Parallel-Computing Platforms
【2h】

Comparing Neuromorphic Solutions in Action: Implementing a Bio-Inspired Solution to a Benchmark Classification Task on Three Parallel-Computing Platforms

机译:在实践中比较神经形态解决方案:在三个并行计算平台上为基准分类任务实施生物启发性解决方案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Neuromorphic computing employs models of neuronal circuits to solve computing problems. Neuromorphic hardware systems are now becoming more widely available and “neuromorphic algorithms” are being developed. As they are maturing toward deployment in general research environments, it becomes important to assess and compare them in the context of the applications they are meant to solve. This should encompass not just task performance, but also ease of implementation, speed of processing, scalability, and power efficiency. Here, we report our practical experience of implementing a bio-inspired, spiking network for multivariate classification on three different platforms: the hybrid digital/analog Spikey system, the digital spike-based SpiNNaker system, and GeNN, a meta-compiler for parallel GPU hardware. We assess performance using a standard hand-written digit classification task. We found that whilst a different implementation approach was required for each platform, classification performances remained in line. This suggests that all three implementations were able to exercise the model's ability to solve the task rather than exposing inherent platform limits, although differences emerged when capacity was approached. With respect to execution speed and power consumption, we found that for each platform a large fraction of the computing time was spent outside of the neuromorphic device, on the host machine. Time was spent in a range of combinations of preparing the model, encoding suitable input spiking data, shifting data, and decoding spike-encoded results. This is also where a large proportion of the total power was consumed, most markedly for the SpiNNaker and Spikey systems. We conclude that the simulation efficiency advantage of the assessed specialized hardware systems is easily lost in excessive host-device communication, or non-neuronal parts of the computation. These results emphasize the need to optimize the host-device communication architecture for scalability, maximum throughput, and minimum latency. Moreover, our results indicate that special attention should be paid to minimize host-device communication when designing and implementing networks for efficient neuromorphic computing.
机译:神经形态计算采用神经元回路模型来解决计算问题。神经形态硬件系统现在变得越来越广泛,并且正在开发“神经形态算法”。随着它们在一般研究环境中的部署日趋成熟,在要解决的应用程序上下文中评估和比较它们变得很重要。这不仅应包括任务性能,还应包括易于实现,处理速度,可伸缩性和能效。在这里,我们报告在三个不同平台上实施生物启发性尖峰网络以进行多元分类的实践经验:混合数字/模拟Spikey系统,基于数字尖峰的SpiNNaker系统以及GeNN(并行GPU的元编译器)硬件。我们使用标准的手写数字分类任务评估性能。我们发现,尽管每个平台都需要使用不同的实现方法,但分类性能仍然保持一致。这表明,尽管接近容量时会出现差异,但是这三种实现都能够行使模型解决任务的能力,而不是暴露固有的平台限制。关于执行速度和功耗,我们发现对于每个平台,大部分计算时间都花在了主机上神经形态设备之外。在准备模型,对合适的输入峰值数据进行编码,对数据进行移位以及对峰值编码结果进行解码的各种组合中花费了时间。这也是消耗总功率很大一部分的地方,其中最明显的是SpiNNaker和Spikey系统。我们得出结论,在过多的主机设备通信或计算的非神经系统部分中,容易失去评估的专用硬件系统的仿真效率优势。这些结果强调需要优化主机设备通信体系结构以实现可伸缩性,最大吞吐量和最小延迟。此外,我们的结果表明,在设计和实现有效的神经形态计算网络时,应特别注意最大程度地减少主机与设备之间的通信。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号