首页> 外文期刊>Applied Mathematical Modelling >Global mode method for dynamic modeling of a flexible-link flexible-joint manipulator with tip mass
【24h】

Global mode method for dynamic modeling of a flexible-link flexible-joint manipulator with tip mass

机译:具有尖端质量的柔性连杆柔性关节机械手动态建模的全局模式方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the global mode method (GMM) is proposed to obtain a reduced-order analytical dynamic model for a signal flexible-link flexible-joint (SFF) manipulator. Firstly, the nonlinear partial differential equations (PDE) that govern the motion of the flexible link and flexible joint, respectively, are derived by applying the Hamilton principle. By combining the linearized governing equations of motion for a flexible link and the equation of motion for the flexible joint, the characteristic equation is obtained for the whole system. The natural frequencies and global mode shapes of the linearized model of the SFF manipulator are determined, and orthogonality relations of the global mode shapes are established. Then, the global mode shapes and their orthogonality relations are used to truncate the nonlinear PDEs of the SFF manipulator to a nonlinear ordinary differential equation with a few degrees-of-freedom (DOF). For comparison, two other dynamic models of the SFF are derived by employing the assumed mode method (AMM) and finite element method (FEM). To verify the method proposed, the results from the GMM are compared with those obtained from the FEM. The effects of the link length and payload mass on the convergence of AMM model for the first two frequencies are investigated. Based on the dynamic models, obtained by GMM and AMM, dynamical responses for the system with different numbers of modes are worked out numerically, which are compared with those obtained from FEM. These comparisons show a good agreement between the results of the GMM and that of the FEM model, which indeed proved the accuracy and applicability of the GMM model.
机译:本文提出了一种全局模式方法(GMM)来获得信号柔性连杆柔性关节(SFF)操纵器的降阶分析动力学模型。首先,应用汉密尔顿原理,推导了分别控制柔性连杆和柔性关节运动的非线性偏微分方程(PDE)。通过将柔性连杆的线性化控制运动方程和柔性关节的运动方程相结合,可以获得整个系统的特征方程。确定SFF机械手线性化模型的固有频率和全局模态形状,并建立全局模态形状的正交关系。然后,使用全局模式形状及其正交关系将SFF机械手的非线性PDE截断为具有几个自由度(DOF)的非线性常微分方程。为了进行比较,通过采用假定模式方法(AMM)和有限元方法(FEM)导出了SFF的其他两个动态模型。为了验证所提出的方法,将GMM的结果与FEM的结果进行了比较。研究了前两个频率的链路长度和有效载荷质量对AMM模型收敛的影响。基于由GMM和AMM获得的动力学模型,对具有不同模式数量的系统的动力学响应进行了数值计算,并与从FEM获得的动力学响应进行了比较。这些比较表明,GMM模型的结果与FEM模型的结果之间有很好的一致性,这确实证明了GMM模型的准确性和适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号