首页> 外文期刊>Applied Mathematical Modelling >Development of a high-order compact finite-difference total Lagrangian method for nonlinear structural dynamic analysis
【24h】

Development of a high-order compact finite-difference total Lagrangian method for nonlinear structural dynamic analysis

机译:非线性结构动力分析的高阶紧致有限差分总拉格朗日方法的发展

获取原文
获取原文并翻译 | 示例

摘要

A high-order compact finite-difference total Lagrangian method (CFDTLM) is developed and applied to nonlinear structural dynamic analysis. The two-dimensional simulation of thermo-elastodynamics is numerically performed in generalized curvilinear coordinates by taking into account the geometric and material nonlinearities. The spatial discretization is carried out by a fourth-order compact finite-difference scheme and an implicit second order accurate dual time-stepping method is applied for the time integration. The accuracy and capability of the proposed solution methodology for the nonlinear structural analysis is investigated through simulating different static and dynamic benchmark problems including large deformations, large displacements and Hookeaneo-Hookean materials. The solution method is demonstrated to be free of shear-locking behavior. The results obtained by the present solution algorithm are compared with the analytical solution and the numerical results of the finite element and finite volume methods to examine the accuracy and robustness of the solution method proposed. A grid study is also performed to investigate the grid size effect on the accuracy and performance of the solution. Indications are that the solution methodology proposed is accurate for simulating nonlinear structural dynamics problems. (C) 2018 Elsevier Inc. All rights reserved.
机译:提出了一种高阶紧致有限差分总拉格朗日方法(CFDTLM),并将其应用于非线性结构动力分析。考虑到几何和材料的非线性,在广义曲线坐标系中进行了热弹动力学的二维模拟。通过四阶紧凑有限差分方案进行空间离散,并将隐式二阶精确双时间步长方法用于时间积分。通过模拟不同的静态和动态基准问题(包括大变形,大位移和Hookean / neo-Hookean材料),研究了所提出的用于非线性结构分析的求解方法的准确性和功能。该解决方法被证明没有剪切锁定行为。将本解决方案算法获得的结果与解析解以及有限元和有限体积方法的数值结果进行比较,以检验所提出解决方案的准确性和鲁棒性。还进行了网格研究,以研究网格大小对解决方案的准确性和性能的影响。表明所提出的求解方法对于模拟非线性结构动力学问题是准确的。 (C)2018 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号