首页> 外文期刊>Applied Artificial Intelligence >Performance Study of Minimax and Reinforcement Learning Agents Playing the Turn-based Game Iwoki
【24h】

Performance Study of Minimax and Reinforcement Learning Agents Playing the Turn-based Game Iwoki

机译:MIMIMAX和加强学习代理的绩效研究播放基于转向的游戏IWOKI

获取原文
获取原文并翻译 | 示例

摘要

Iwoki math is an abstract board game that consists on placing tiles and that combines the calculation of simple mathematical operations with the spatial perception of two-dimensional objects. Due to its inherent features, it is also a very challenging environment to test different artificial intelligence technologies and methods. In this paper, a series of intelligent agents with different reasoning and decision capacities have been developed based on different artificial intelligence techniques applied to game theory, such as Minimax or Reinforcement Learning. Their capabilities have been tested by playing games with each other, but also against human players, obtaining remarkable results. The experimental results ratify conclusions already known at a theoretical level but also provide a new contribution that could be the basis for future research.
机译:IWOKI MATH是一个抽象的棋盘游戏,包括放置瓷砖,并结合了与二维物体的空间感知的简单数学运算的计算。 由于其固有的功能,它也是测试不同人工智能技术和方法的非常具有挑战性的环境。 本文基于应用于博弈论的不同人工智能技术,开发了一系列具有不同推理和决策能力的智能代理,例如Minimax或加强学习。 他们的能力已经通过互相玩游戏来测试,而且还针对人类参与者进行了测试,获得了显着的结果。 实验结果批准了在理论层面已知的结论,但也提供了一种可能成为未来研究的基础的新贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号