首页> 外文期刊>Applied Artificial Intelligence >Detection of Thin Boundaries between Different Types of Anomalies in Outlier Detection Using Enhanced Neural Networks
【24h】

Detection of Thin Boundaries between Different Types of Anomalies in Outlier Detection Using Enhanced Neural Networks

机译:使用增强神经网络检测异常检测中不同类型异常之间的薄边界

获取原文
获取原文并翻译 | 示例

摘要

Outlier detection has received special attention in various fields, mainly for those dealing with machine learning and artificial intelligence. As strong outliers, anomalies are divided into point, contextual and collective outliers. The most important challenges in outlier detection include the thin boundary between the remote points and natural area, the tendency of new data and noise to mimic the real data, unlabeled datasets and different definitions for outliers in different applications. Considering the stated challenges, we defined new types of anomalies called Collective Normal Anomaly and Collective Point Anomaly in order to improve a much better detection of the thin boundary between different types of anomalies. Basic domain-independent methods are introduced to detect these defined anomalies in both unsupervised and supervised datasets. The Multi-Layer Perceptron Neural Network is enhanced using the Genetic Algorithm to detect new defined anomalies with a higher precision so as to ensure a test error less than that be calculated for the conventional Multi-Layer Perceptron Neural Network. Experimental results on benchmark datasets indicated reduced error of anomaly detection process in comparison to baselines.
机译:异常值检测在各种领域得到了特别关注,主要用于处理机器学习和人工智能的人。作为强烈的异常值,异常分为点,上下文和集体异常值。异常值检测中最重要的挑战包括远程点和自然区域之间的薄边界,新数据和噪声模仿真实数据,未标记的数据集和不同应用程序中异常值的不同定义。考虑到所说的挑战,我们定义了称为集体正常异常和集体点异常的新型异常,以改善更好地检测不同类型异常之间的薄边界。引入基本的域独立方法以检测无监督和监督数据集中的这些定义的异常。使用遗传算法来增强多层的Perceptron神经网络,以检测具有更高精度的新定义的异常,以确保测试误差小于传统多层Perceptron神经网络的测试误差。基准数据集的实验结果表明与基线相比,异常检测过程的误差降低。

著录项

  • 来源
    《Applied Artificial Intelligence》 |2020年第8期|345-377|共33页
  • 作者单位

    Islamic Azad Univ Marvdasht Branch Dept Comp Engn Marvdasht Iran;

    Islamic Azad Univ Marvdasht Branch Dept Comp Engn Marvdasht Iran;

    Inst Adv Studies Basic Sci Dept Comp Sci & Informat Technol Zanjan Iran|Inst Adv Studies Basic Sci Res Ctr Basic Sci & Modern Technol Zanjan Iran|Pentax GmbH Res & Innovat Dept Bonn Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号