首页> 外文期刊>Applied and Computational Harmonic Analysis >Stable phase retrieval from locally stable and conditionally connected measurements
【24h】

Stable phase retrieval from locally stable and conditionally connected measurements

机译:从局部稳定和有条件地连接测量的稳定相位检索

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study the stability of phase retrieval problems via a family of locally stable phase retrieval frame measurements in Banach spaces, which we call "locally stable and conditionally connected" (LSCC) measurement schemes. For any signal f in the Banach space, we associate it with a weighted graph G(f), defined by the LSCC measurement scheme, and show that the phase retrievability of the signal f is determined by the connectivity of G(f). We quantify the phase retrieval stability of the signal by two common measures of graph connectivity: The Cheeger constant for real-valued signals, and algebraic connectivity for complex-valued signals. We then use our results to study the stability of two phase retrieval models. In the first model, we study a finite-dimensional phase retrieval problem from locally supported measurements such as the windowed Fourier transform. We show that signals "without large holes" are phase retrievable, and that for such signals in R-d the phase retrieval stability constant grows proportionally to d(1/2), while in C-d it grows proportionally to d. The second model we consider is an infinite-dimensional phase retrieval problem in a shift-invariant space. In infinite-dimension spaces, even phase retrievable signals can have the Cheeger constant being zero, and hence have an infinite stability constant. We give an example of signals with monotone polynomial decay which has the Cheeger constant being zero, and an example with exponential decay which has a strictly positive Cheeger constant. (C) 2021 Elsevier Inc. All rights reserved.
机译:在本文中,我们通过Banach空间中的局部稳定相位检索帧测量系列研究了相位检索问题的稳定性,我们称之为“局部稳定且有条件连接”(LSCC)测量方案。对于Banach空间中的任何信号F,我们将其与由LSCC测量方案定义的加权图G(F)相关联,并且示出了信号F的相位可回收性由G(F)的连接确定。通过两种常见的图形连接措施来量化信号的相位检索稳定性:实际值信号的Cheeger常数,以及用于复值信号的代数连接。然后,我们使用我们的结果来研究两阶段检索模型的稳定性。在第一模型中,我们研究了来自局部支持的测量的有限阶段检索问题,例如窗口傅立叶变换。我们示出了“没有大孔”的信号是相位可检索的,并且对于R-D中的这种信号,相位检索稳定性常数恒定地生长至D(1/2),而在C-D中以比例为d。我们认为的第二种模型是换档不变空间中的无限维阶段检索问题。在无限尺寸空间中,偶数相位可检索信号可以具有厚度恒定为零,因此具有无限稳定性恒定。我们给出了具有单调多项式衰减的信号的例子,该信号具有厚度恒定为零,并且具有具有严格正芯片常数的指数衰减的示例。 (c)2021 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号