首页> 外文期刊>Applied and Computational Harmonic Analysis >Lower Lipschitz bounds for phase retrieval from locally supported measurements
【24h】

Lower Lipschitz bounds for phase retrieval from locally supported measurements

机译:下Lipschitz边界用于从本地支持的测量中进行相位检索

获取原文
获取原文并翻译 | 示例

摘要

In this short note, we consider the worst case noise robustness of any phase retrieval algorithm which aims to reconstruct all nonvanishing vectors x is an element of C-d (up to a single global phase multiple) from the magnitudes of shifted local correlation measurements. Examples of such measurements include both spectrogram measurements of x using locally supported windows and masked Fourier transform intensity measurements of x using bandlimited masks. As a result, the robustness results considered herein apply to a wide range of both ptychographic and Fourier ptychographic imaging scenarios. In particular, the main results imply that the accurate recovery of high-resolution images of extremely large samples using highly localized probes is likely to require an extremely large number of measurements in order to be robust to worst case measurement noise, independent of the recovery algorithm employed. Furthermore, recent pushes to achieve high-speed and high-resolution ptychographic imaging of integrated circuits for process verification and failure analysis will likely need to carefully balance probe design (e.g., their effective time-frequency support) against the total number of measurements acquired in order for their imaging techniques to be stable to measurement noise, no matter what reconstruction algorithms are applied. (C) 2019 Elsevier Inc. All rights reserved.
机译:在本简短说明中,我们考虑了旨在重建所有不消失向量的任何相位检索算法的最坏情况下的噪声鲁棒性x是从已移位局部相关性测量值的大小得出的C-d元素(最多单个全局相位倍数)。这种测量的示例包括使用局部支持的窗口对x进行频谱图测量和使用带限掩模对x进行掩模傅立叶变换强度测量。结果,本文所考虑的鲁棒性结果适用于多种谱图和傅里叶谱图成像方案。特别是,主要结果表明,使用高度局部化的探针来准确恢复超大型样品的高分辨率图像可能需要进行大量测量,以便对最坏情况下的测量噪声具有鲁棒性,而与恢复算法无关受雇。此外,最近为实现用于过程验证和故障分析的集成电路的高速高分辨率柱状图成像而进行的最新努力可能需要谨慎地平衡探头设计(例如,它们的有效时频支持)与在测量中获得的测量总数之间的平衡。为了使他们的成像技术对测量噪声稳定,无论使用什么重建算法。 (C)2019 Elsevier Inc.保留所有权利。

著录项

  • 来源
    《Applied and Computational Harmonic Analysis》 |2019年第2期|526-538|共13页
  • 作者单位

    Michigan State Univ, Dept Math, E Lansing, MI 48824 USA|Michigan State Univ, Dept CMSE, E Lansing, MI 48824 USA;

    Michigan State Univ, Dept Math, E Lansing, MI 48824 USA;

    Michigan State Univ, Dept Computat Math Sci & Engn CMSE, E Lansing, MI 48824 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号