首页> 外文期刊>Applied and Computational Harmonic Analysis >Lower Lipschitz bounds for phase retrieval from locally supported measurements
【24h】

Lower Lipschitz bounds for phase retrieval from locally supported measurements

机译:来自本地支持的测量的阶段检索的较低的嘴唇尖端界

获取原文
获取原文并翻译 | 示例

摘要

In this short note, we consider the worst case noise robustness of any phase retrieval algorithm which aims to reconstruct all nonvanishing vectors x is an element of C-d (up to a single global phase multiple) from the magnitudes of shifted local correlation measurements. Examples of such measurements include both spectrogram measurements of x using locally supported windows and masked Fourier transform intensity measurements of x using bandlimited masks. As a result, the robustness results considered herein apply to a wide range of both ptychographic and Fourier ptychographic imaging scenarios. In particular, the main results imply that the accurate recovery of high-resolution images of extremely large samples using highly localized probes is likely to require an extremely large number of measurements in order to be robust to worst case measurement noise, independent of the recovery algorithm employed. Furthermore, recent pushes to achieve high-speed and high-resolution ptychographic imaging of integrated circuits for process verification and failure analysis will likely need to carefully balance probe design (e.g., their effective time-frequency support) against the total number of measurements acquired in order for their imaging techniques to be stable to measurement noise, no matter what reconstruction algorithms are applied. (C) 2019 Elsevier Inc. All rights reserved.
机译:在这短的注意事项中,我们考虑任何相位检索算法的最坏情况噪声稳健性,其目的是重建所有非衰变向量X是从移位的局部相关测量的幅度的C-D(最多全局相位多个)的元素。这种测量的示例包括使用本地支持的窗口的频谱图测量x,并且使用带状的掩模屏蔽X的傅立叶变换强度测量。结果,这里考虑的稳健性结果适用于广泛的PTYCHOACH和傅立叶PTYCHACHIG成像场景。特别地,主要结果意味着使用高度局部化探针的极大样本的高分辨率图像的准确恢复可能需要极大的测量值,以便对最坏情况测量噪声具有鲁棒,而独立于恢复算法雇用。此外,最近推动用于实现用于处理验证和故障分析的集成电路的高速和高分辨率PTYCHogure成像,可能需要仔细平衡探测设计(例如,它们有效时频支持)与所获取的测量总数为了它们的成像技术来稳定到测量噪声,无论应用什么重建算法。 (c)2019 Elsevier Inc.保留所有权利。

著录项

  • 来源
    《Applied and Computational Harmonic Analysis》 |2019年第2期|526-538|共13页
  • 作者单位

    Michigan State Univ Dept Math E Lansing MI 48824 USA|Michigan State Univ Dept CMSE E Lansing MI 48824 USA;

    Michigan State Univ Dept Math E Lansing MI 48824 USA;

    Michigan State Univ Dept Computat Math Sci & Engn CMSE E Lansing MI 48824 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号