首页> 外文期刊>Applied and Computational Harmonic Analysis >Continuous curvelet transform Ⅰ. Resolution of the wavefront set
【24h】

Continuous curvelet transform Ⅰ. Resolution of the wavefront set

机译:连续曲波变换Ⅰ。波阵面分辨率

获取原文
获取原文并翻译 | 示例

摘要

We discuss a Continuous Curvelet Transform (CCT), a transform f → Γ_f (a, b, θ) of functions f (x_1, x_2) on R~2 into a transform domain with continuous scale a > 0, location b ∈R~2, and orientation θ ∈ [0, 2π). Here Γ_f (a, b, θ) = < f, γ_(abθ) > projects f onto analyzing elements called curvelets Yabe which are smooth and of rapid decay away from an a by a~(1/2) rectangle with minor axis pointing in direction θ. We call them curvelets because this anisotropic behavior allows them to 'track' the behavior of singularities along curves. They are continuum scale/space/orientation analogs of the discrete frame of curvelets discussed in [E.J. Candes, F. Guo, New multi-scale transforms, minimum total variation synthesis: applications to edge-preserving image reconstruction, Signal Process. 82 (2002) 1519-1543; EJ. Candes, L. Demanet, Curvelets and Fourier integral operators, C. R. Acad. Sci. Paris, Ser. I (2003) 395-398; EJ. Candes, D.L. Donoho. Curvelets: a surprisingly effective nonadaptive representation of objects with edges, in: A. Cohen, C. Rabut, L.L. Schumaker (Eds.), Curve and Surface Fitting: Saint-Malo 1999, Vanderbilt Univ. Press, Nashville, TN, 2000], We use the CCT to analyze several objects having singularities at points, along lines, and along smooth curves. These examples show that for fixed (x_0, θ_0), Γ_f (a, x_0, θ_0) decays rapidly as a → 0 if f is smooth near x_0, or if the singularity of f at x_0 is oriented in a different direction than θ_0. Generalizing these examples, we show that decay properties of Γ_f (a, x_0, θ_0) for fixed (x_0, θ_0), as a → 0 can precisely identify the wavefront set and the H~m -wavefront set of a distribution. In effect, the wavefront set of a distribution is the closure of the set of (x_0, θ_0) near which Γ_f f(a,x,θ) is not of rapid decay as a → 0; the H~m-wavefront set is the closure of those points (x_0, θ_0) where the 'directional parabolic square function' S~m(x, θ) = (∫ ∣Γ_f (a, x, θ)∣~2 da/a~(3 + 2m))~(1/2) is not locally integrable. The CCT is closely related to a continuous transform pioneered by Hart Smith in his study of Fourier Integral Operators. Smith's transform is based on strict affine parabolic scaling of a single mother wavelet, while for the transform we discuss, the generating wavelet changes (slightly) scale by scale. The CCT can also be compared to the FBI (Fourier-Bros-Iagolnitzer) and Wave Packets (Cordoba-Fefferman) transforms. We describe their similarities and differences in resolving the wavefront set.
机译:我们讨论连续曲线小波变换(CCT),将R〜2上的函数f(x_1,x_2)的变换f→Γ_f(a,b,θ)转换为连续标度a> 0,位置b∈R〜的变换域2,方向θ∈[0,2π)。此处Γ_f(a,b,θ)= 将f投影到称为Curvelet Yabe的分析元素上,这些元素平滑且具有从a离开a〜(1/2)矩形并沿短轴指向快速衰减的趋势在方向θ上。我们称它们为Curvelet,是因为这种各向异性的行为使他们能够“跟踪”曲线上的奇异行为。它们是在[E.J. Candes,F。Guo,新的多尺度变换,最小总变化综合:在边缘保留图像重建中的应用,信号处理。 82(2002)1519-1543; EJ。 Candes,L。Demanet,Curvelets和Fourier积分算子,C。R. Acad。科学巴黎我(2003)395-398; EJ。坎德斯堂野Curvelets:一种具有边缘的对象的有效非自适应表示,出自:A。Cohen,C.Rabut,L.L。Schumaker(编辑),Curve and Surface Fitting:Saint-Malo 1999,Vanderbilt Univ。出版社,纳什维尔,田纳西州,2000年],我们使用CCT分析在点,沿线和沿平滑曲线具有奇异性的几个对象。这些示例表明,对于固定的(x_0,θ_0),如果f在x_0附近平滑,或者如果x_0处的f的奇异性指向的方向不同于θ_0,则Γ_f(a,x_0,θ_0)随a→0迅速衰减。概括这些示例,我们表明对于固定(x_0,θ_0)的Γ_f(a,x_0,θ_0)的衰减特性,因为a→0可以精确地识别分布的波前集和H〜m-波前集。实际上,分布的波前集合是(x_0,θ_0)集合的闭合,在该集合附近Γ_ff(a,x,θ)不会随着a→0迅速衰减。 H〜m波前集合是那些点(x_0,θ_0)的闭合点,其中“方向抛物线平方函数” S〜m(x,θ)=(∫∣Γ_f(a,x,θ)∣〜2 da / a〜(3 + 2m))〜(1/2)在本地不可积分。 CCT与哈特·史密斯(Hart Smith)在其对傅立叶积分算符的研究中提出的连续变换密切相关。 Smith的变换基于单个母小波的严格仿射抛物线缩放,而对于我们讨论的变换,生成的小波逐个缩放(略微)缩放。也可以将CCT与FBI(傅里叶-布罗斯-伊阿古尼策)和波包(科多巴-费弗曼)变换进行比较。我们描述它们在求解波前集合中的异同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号