首页> 外文期刊>Monatshefte für Mathematik >Continuous shearlet frames and resolution of the wavefront set
【24h】

Continuous shearlet frames and resolution of the wavefront set

机译:连续的小波框架和波阵面分辨率

获取原文
获取原文并翻译 | 示例

摘要

In recent years directional multiscale transformations like the curvelet- or shearlet transformation have gained considerable attention. The reason for this is that these transforms are—unlike more traditional transforms like wavelets—able to efficiently handle data with features along edges. The main result in Kutyniok and Labate (Trans. Am. Math. Soc. 361:2719–2754, 2009) confirming this property for shearlets is due to Kutyniok and Labate where it is shown that for very special functions ψ with frequency support in a compact conical wegde the decay rate of the shearlet coefficients of a tempered distribution f with respect to the shearlet ψ can resolve the wavefront set of f. We demonstrate that the same result can be verified under much weaker assumptions on ψ, namely to possess sufficiently many anisotropic vanishing moments. We also show how to build frames for ${L^2(mathbb{R}^2)}$ from any such function. To prove our statements we develop a new approach based on an adaption of the Radon transform to the shearlet structure.
机译:近年来,方向性多尺度转换(例如Curvelet-Sletlet或Sletlet变换)已经引起了广泛的关注。这样做的原因是,这些转换与小波等传统转换不同,能够有效地处理沿边的特征数据。 Kutyniok和Labate的主要结果(Trans。Am。Math。Soc。361:2719–2754,2009)证实了微剪的这一特性是由于Kutyniok和Labate所致,其中表明,对于具有频率支持的非常特殊函数ψ紧凑的圆锥形回火分布f的小波系数相对于小波ψ的衰减率可以解析f​​的波前集。我们证明,对ψ的假设要弱得多,即拥有足够多的各向异性消失矩,就可以验证相同的结果。我们还将展示如何通过任何此类函数为$ {L ^ 2(mathbb {R} ^ 2)} $构建框架。为了证明我们的陈述,我们基于Radon变换对Slicelet结构的适应性开发了一种新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号