首页> 外文期刊>Applied and Computational Harmonic Analysis >Suboptimality of nonlocal means for images with sharp edges
【24h】

Suboptimality of nonlocal means for images with sharp edges

机译:具有锐利边缘的图像的非局部均值的次优性

获取原文
获取原文并翻译 | 示例

摘要

We conduct an asymptotic risk analysis of the nonlocal means image denoising algorithm for the Horizon class of images that are piecewise constant with a sharp edge discontinuity. We prove that the mean square risk of an optimally tuned nonlocal means algorithm decays according to n~1 log~(1/2+€)n, for an n x n-pixel image with ∈ > 0. This decay rate is an improvement over some of the predecessors of this algorithm, including the linear convolution filter, median filter, and the SUSAN filter, each of which provides a rate of only n~(-2/3). It is also within a logarithmic factor from optimally tuned wavelet thresholding. However, it is still substantially lower than the optimal minimax rate of n~(-4/3).
机译:我们对分段时间恒定且具有锐利边缘不连续性的Horizo​​n类图像进行非局部均值图像去噪算法的渐近风险分析。我们证明,对于∈> 0的nx个n像素图像,最优调整非局部均值算法的均方风险根据n〜1 log〜(1/2 +€)n衰减。该衰减率是对该算法的一些前身包括线性卷积滤波器,中值滤波器和SUSAN滤波器,它们各自提供的速率仅为n〜(-2/3)。它也位于最佳调谐小波阈值的对数因子之内。但是,它仍然远低于n〜(-4/3)的最佳最小最大比率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号