首页> 外文期刊>Applied and Computational Harmonic Analysis >On the evaluation of prolate spheroidal wave functions and associated quadrature rules
【24h】

On the evaluation of prolate spheroidal wave functions and associated quadrature rules

机译:关于扁球面波函数和相关正交规则的求值

获取原文
获取原文并翻译 | 示例

摘要

As demonstrated by Slepian et al. in a sequence of classical papers (see Slepian (1983)[33], Slepian and Pollak (1961)[34], Landau and Pollak (1961)[18], Slepian and Pollak (1964) [35], Slepian (1965) [36]), prolate spheroidal wave functions (PSWFs) provide a natural and efficient tool for computing with bandlimited functions defined on an interval. Recently, PSWFs have been becoming increasingly popular in various areas in which such functions occur - this includes physics (e.g. wave phenomena, fluid dynamics), engineering (signal processing, filter design), etc. To use PSWFs as a computational tool, one needs fast and accurate numerical algorithms for the evaluation of PSWFs and related quantities, as well as for the construction of corresponding quadrature rules, interpolation formulas, etc. During the last 15 years, substantial progress has been made in the design of such algorithms - see, for example, Xiao et al. (2001) [40] (see also Bowkamp (1947) [6], Slepian and Pollak (1961) [34], Landau and Pollak (1961) [18], Slepian and Pollak (1964) [35] for some classical results). The complexity of many of the existing algorithms, however, is at least quadratic in the band limit c. For example, the evaluation of the nth eigenvalue of the prolate integral operator requires O(c~2+n~2) operations (see e.g. Xiao et al. (2001) [40]); the construction of accurate quadrature rules for the integration (and associated interpolation) of bandlimited functions with band limit c requires O(c~3) operations (see e.g. Cheng et al. (1999) [8]). Therefore, while the existing algorithms are satisfactory for moderate values of c (e.g. c ≤ 10~3), they tend to be relatively slow when c is large (e.g. c ≥ 10~4). In this paper, we describe several numerical algorithms for the evaluation of PSWFs and related quantities, and design a class of PSWF-based quadratures for the integration of bandlimited functions. While the analysis is somewhat involved and will be published separately (currently, it can be found in Osipov and Rokhlin (2012) [27]), the resulting numerical algorithms are quite simple and efficient in practice. For example, the evaluation of the nth eigenvalue of the prolate integral operator requires O(n + c·logc) operations; the construction of accurate quadrature rules for the integration (and associated interpolation) of bandlimited functions with band limit c requires O(c) operations. All algorithms described in this paper produce results essentially to machine precision. Our results are illustrated via several numerical experiments.
机译:如Slepian等人所述。在一系列经典论文中(参见Slepian(1983)[33],Slepian and Pollak(1961)[34],Landau and Pollak(1961)[18],Slepian and Pollak(1964)[35],Slepian(1965)) [36]),扁球面波函数(PSWF)提供了一个自然而有效的工具,用于计算在区间上定义的带限函数。近来,PSWF在具有此类功能的各个领域中变得越来越流行-这包括物理(例如,波现象,流体动力学),工程(信号处理,滤波器设计)等。要将PSWF用作计算工具,需要满足以下条件:快速,准确的数值算法,用于评估PSWF和相关量,以及构造相应的正交规则,插值公式等。在过去15年中,此类算法的设计取得了实质性进展-参见,例如Xiao等。 (2001)[40](另请参见Bowkamp(1947)[6],Slepian和Pollak(1961)[34],Landau和Pollak(1961)[18],Slepian和Pollak(1964)[35])。 )。然而,许多现有算法的复杂度在频带极限c中至少是平方的。例如,求扁长积分算子的第n个特征值需要O(c〜2 + n〜2)运算(参见例如Xiao等人(2001)[40])。构造带限度为c的带限函数的积分(和相关插值)的精确正交规则需要O(c〜3)运算(例如参见Cheng等人(1999)[8])。因此,尽管现有算法对于中等的c值(例如c≤10〜3)是令人满意的,但是当c较大(例如c≥10〜4)时,它们往往相对较慢。在本文中,我们描述了几种用于评估PSWF和相关数量的数值算法,并设计了一类基于PSWF的正交函数来集成带限函数。尽管该分析有些涉及并且将单独发布(当前可以在Osipov和Rokhlin(2012)[27]中找到),但所得的数值算法在实践中非常简单有效。例如,求扁长积分算子的第n个特征值需要O(n + c·logc)运算;对于带限c的带限函数的积分(和相关联的插值),要构建精确的正交规则,需要进行O(c)运算。本文中描述的所有算法基本上都会对机器精度产生影响。我们的结果通过几个数值实验得到说明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号