首页> 外文期刊>ACM transactions on mathematical software >Algorithm 840: Computation of Grid Points, Quadrature Weights and Derivatives for Spectral Element Methods Using Prolate Spheroidal Wave Functions—Prolate Elements
【24h】

Algorithm 840: Computation of Grid Points, Quadrature Weights and Derivatives for Spectral Element Methods Using Prolate Spheroidal Wave Functions—Prolate Elements

机译:算法840:使用近似球面波函数的光谱元素方法的网格点,正交权重和导数的计算-近似元素

获取原文
获取原文并翻译 | 示例

摘要

High order domain decomposition methods using a basis of Legendre polynomials, known variously as "spectral elements" or "p-type finite elements," have become very popular. Recent studies suggest that accuracy and efficiency can be improved by replacing Legendre polynomials by prolate spheroidal wave functions of zeroth order. In this article, we explain the practicalities of computing all the numbers needed to switch bases: the grid points x_j, the quadrature weights w_j, and the values of the prolate functions and their derivatives at the grid points. The prolate functions themselves are computed by a Legendre-Galerkin discretization of the prolate differential equation; this yields a symmetric tridiagonal matrix. The prolate functions are then defined by Legendre series whose coefficients are the eigenfunctions of the matrix eigenproblem. The grid points and weights are found simultaneously through a Newton iteration. For large N and c, the iteration diverges from a first guess of the Legendre-Lobatto points and weights. Fortunately, the variations of the x_j and w_j with c are well-approximated by a symmetric parabola over the whole range of interest. This makes it possible to bypass the continuation procedures of earlier authors.
机译:使用勒让德多项式的基础的高阶域分解方法,已被广泛称为“谱元素”或“ p型有限元”。最近的研究表明,可以通过用零阶扁长球面波函数代替Legendre多项式来提高准确性和效率。在本文中,我们说明了计算切换基数所需的所有数字的实用性:网格点x_j,正交权重w_j以及网格点上的函数函数及其派生类的值。扁长函数本身是通过扁长微分方程的Legendre-Galerkin离散化来计算的;这产生对称的三对角矩阵。然后由Legendre级数定义轮廓函数,其系数为矩阵特征问题的特征函数。网格点和权重是通过牛顿迭代同时找到的。对于较大的N和c,迭代与Legendre-Lobatto点和权重的第一个猜测有所不同。幸运的是,x_j和w_j随c的变化在整个目标范围内都由对称抛物线很好地近似了。这使得绕过早期作者的继续程序成为可能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号