...
首页> 外文期刊>Journal of Computational Physics >Adaptive radial basis function and Hermite function pseudospectral methods for computing eigenvalues of the prolate spheroidal wave equation for very large bandwidth parameter
【24h】

Adaptive radial basis function and Hermite function pseudospectral methods for computing eigenvalues of the prolate spheroidal wave equation for very large bandwidth parameter

机译:自适应径向基函数和Hermite函数伪谱方法,用于计算宽带宽参数时扁球面波方程的特征值

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Asymptotic approximations show that the lowest modes of the prolate spheroidal wave equation are concentrated with an O(1/root c) length scale where cis the "bandwidth" parameter of the prolate differential equation. Accurate computation of the ground state eigenvalue by the long-known Legendre-Galerkin method requires roughly 3.8 root c Legendre polynomials. Some studies have therefore applied a grid with 20,000 points in conjunction with high order finite differences to achieve c = 10(7). Here, we show that by adaptively applying either Hermite functions or Gaussian radial basis functions (RBFs), it is never necessary to use more than eighty degrees of freedom to calculate the lowest dozen eigenvalues of each symmetry class. For small c, the eigenmodes are not confined to a small portion of the domain theta epsilon [-pi/2, pi/2] in latitude, but are global. We show that by periodizing the basis functions via imbricate series, it is possible to apply Hermite and RBFs even in the limit c -> 0. (The Legendre method is probably a little more efficient in this limit since the prolate functions tend to Legendre polynomials in this limit.) A "sideband truncation" restricts the discretization to a small block taken from the large Hermite-Galerkin matrix. We show that sideband truncation with blocks as small as 5 x 5 is a very efficient way to compute high order modes. In an appendix, we prove a rigorous convergence theorem for the periodized Hermite expansion. (C) 2014 Elsevier Inc. All rights reserved.
机译:渐近近似表明,扁长球面波动方程的最低模式集中在O(1 / root c)长度标度上,其中顺位是扁长微分方程的“带宽”参数。通过众所周知的Legendre-Galerkin方法精确计算基态特征值需要大约3.8根c勒让德多项式。因此,一些研究将具有20,000个点的网格与高阶有限差分结合使用,以实现c = 10(7)。在这里,我们表明通过自适应地应用Hermite函数或高斯径向基函数(RBFs),永远不必使用超过80个自由度来计算每个对称类的最低特征值。对于小c,本征模不限于纬度theta epsilon [-pi / 2,pi / 2]的一小部分,而是全局的。我们证明,通过对基函数进行阶跃化,即使在极限c-> 0的情况下,也可以应用Hermite和RBF。 “边带截断”将离散化限制为从大Hermite-Galerkin矩阵中提取的小块。我们表明,使用小至5 x 5的块截断边带是计算高阶模式的一种非常有效的方法。在附录中,我们证明了周期Hermite展开的严格收敛定理。 (C)2014 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号