首页> 外文期刊>Applied and Computational Harmonic Analysis >Improved bounds for the eigenvalues of prolate spheroidal wave functions and discrete prolate spheroidal sequences
【24h】

Improved bounds for the eigenvalues of prolate spheroidal wave functions and discrete prolate spheroidal sequences

机译:改进的聚合物球波函数的特征值和离散的脯氨酸球序列的改进

获取原文
获取原文并翻译 | 示例

摘要

The discrete prolate spheroidal sequences (DPSSs) are a set of orthonormal sequences in l(2)(Z) which are strictly bandlimited to a frequency band [-W, W] and maximally concentrated in a time interval {0, ..., N - 1}. The timelimited DPSSs (sometimes referred to as the Slepian basis) are an orthonormal set of vectors in C-N whose discrete time Fourier transform (DTFT) is maximally concentrated in a frequency band [-W, W]. Due to these properties, DPSSs have a wide variety of signal processing applications. The DPSSs are the eigensequences of a timelimit-then-bandlimit operator and the Slepian basis vectors are the eigenvectors of the so-called prolate matrix. The eigenvalues in both cases are the same, and they exhibit a particular clustering behavior - slightly fewer than 2NW eigenvalues are very close to 1, slightly fewer than N-2NW eigenvalues are very close to 0, and very few eigenvalues are not near 1 or 0. This eigenvalue behavior is critical in many of the applications in which DPSSs are used. There are many asymptotic characterizations of the number of eigenvalues not near 0 or 1. In contrast, there are very few non asymptotic results, and these don't fully characterize the clustering behavior of the DPSS eigenvalues. In this work, we establish two novel non-asymptotic bounds on the number of DPSS eigenvalues between epsilon and 1 - epsilon. Also, we obtain bounds detailing how close the first approximate to 2NW eigenvalues are to 1 and how close the last approximate to N - 2NW eigenvalues are to 0. Furthermore, we extend these results to the eigenvalues of the prolate spheroidal wave functions (PSWFs), which are the continuous-time version of the DPSSs. Finally, we present numerical experiments demonstrating the quality of our non-asymptotic bounds on the number of DPSS eigenvalues between epsilon and 1 - epsilon. (C) 2021 Elsevier Inc. All rights reserved.
机译:离散的脯氨酸球序列(DPSSS)是L(2)(z)中的一组正畸序列,其被严格地带到频带[-w,w]并以时间间隔最大限度地集中{0,..., n - 1}。定期的DPSS(有时称为绞线基础)是C-N中的正常载体组,其离散时间傅里叶变换(DTFT)最大地集中在频带[-W,W]中。由于这些属性,DPSSS具有各种信号处理应用。 DPSSS是Timelimit-Then-Bandlimit操作员的特征性,并且绞线基载体是所谓的脯氨酸基质的特征向量。两种情况下的特征值都是一样的,它们表现出特定的聚类行为 - 略微少于2NW特征值非常接近1,略微少于N-2NW特征值非常接近0,很少有特征值不接近1或0,此特征值行为在使用DPSSS的许多应用中是至关重要的。在0或1附近的特征值数量有许多渐近表征。相反,存在很少的非渐近结果,并且这些不完全表征DPSS特征值的聚类行为。在这项工作中,我们建立了两种新的非渐近界,ε在ε和1 - epsilon之间的DPSS特征值的数量上。此外,我们获得了细节第一个近似对2nW特征值的界限为1,并且对N - 2NW特征值的最后一个近似接近0.此外,我们将这些结果延伸到环形球波函数(PSWFS)的特征值,这是DPSSS的连续时间版本。最后,我们提出了数值实验,证明了εILON和1 - epsilon之间的DPSS特征值的数量的非渐近界的质量。 (c)2021 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号