首页> 外文期刊>Applied and Computational Harmonic Analysis >Certain upper bounds on the eigenvalues associated with prolate spheroidal wave functions
【24h】

Certain upper bounds on the eigenvalues associated with prolate spheroidal wave functions

机译:与扁球面波函数相关的特征值的某些上限

获取原文
获取原文并翻译 | 示例

摘要

Prolate spheroidal wave functions (PSWFs) play an important role in various areas, from physics (e.g. wave phenomena, fluid dynamics) to engineering (e.g. signal processing, filter design). One of principal reasons for the importance of PSWFs is that they are a natural and efficient tool for computing with bandlimited functions, that frequently occur in the above-mentioned areas. This is due to the fact that PSWFs are the eigenfunctions of the integral operator representing time-limiting followed by low-passing. Needless to say, the behavior of this operator is to a large degree governed by the decay rate of its eigenvalues. Therefore, this decay rate plays a crucial role in the related theory and applications - for example, in construction of quadratures, interpolation, filter design, etc. The significance of PSWFs and, in particular, of the decay rate of the eigenvalues of the associated integral operator, was realized at least half a century ago. Nevertheless, perhaps surprisingly, despite vast numerical experience and existence of several asymptotic expansions, non-trivial explicit upper bounds on the magnitudes of the eigenvalues in various regimes have been missing for decades. The principal goal of this paper is to close this gap in the theory of PSWFs. We analyze the integral operator associated with PSWFs, to derive fairly tight non-asymptotic upper bounds on the magnitudes of its eigenvalues. Our results are illustrated via several numerical experiments.
机译:扁平球状波函数(PSWF)在从物理(例如波现象,流体动力学)到工程(例如信号处理,滤波器设计)的各个领域中都发挥着重要作用。 PSWF重要性的主要原因之一是它们是用于计算带限功能的自然而有效的工具,这种功能经常出现在上述区域。这是由于以下事实:PSWF是积分算子的本征函数,表示时限,然后是低通。不用说,该算子的行为在很大程度上受其特征值的衰减率控制。因此,这种衰减率在相关的理论和应用中起着至关重要的作用,例如在正交函数的构造,插值,滤波器设计等方面。PSWF的重要性,尤其是相关联特征值的衰减率积分算子,至少在半个世纪前就实现了。然而,也许令人惊讶的是,尽管拥有丰富的数值经验和多次渐近展开的存在,但数十年来,在各种情况下本征值大小的非平凡的显式上限一直缺失。本文的主要目标是弥合PSWFs理论中的这一空白。我们分析与PSWF相关的积分算子,以推导其特征值的大小相当紧的非渐近上限。我们的结果通过几个数值实验得到说明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号