【24h】

NUMERICAL QUADRATURE PERFORMED ON THE GENERALIZED PROLATE SPHEROIDAL FUNCTIONS

机译:广义扁球面函数的数值正交

获取原文
获取原文并翻译 | 示例

摘要

In the recent paper on the computation of the prolate spheroidal wave functions the numerical technique for their accurate integration was also proposed. The conventional quadrature formulas can not be used here: this would cause a significant lost of accuracy. The point is that the prolate spheroidal functions may vanish exponentially fast or oscillate rapidly, accumulating zeroes near singular points +-1. The necessity to compute integrals containing prolate spheroidal wave functions arises in many practical applications. They appear with the separation of variables in spheroidal coordinates as eigenfunctions of a singular Sturm-Lioville problem and constitute a natural basis in axially-symmetric physical problems. In this case integrals representing the Fourier coefficients or matrix elements are desired, which contain this functions or even their products.
机译:在最近关于扁球面波函数计算的论文中,还提出了精确积分球函数的数值技术。传统的正交公式不能在这里使用:这将导致精度的显着下降。关键是,长球状函数可能迅速消失或迅速振荡,在奇点+ -1附近累积零。在许多实际应用中出现了计算包含扁球面波函数的积分的必要性。它们以球面坐标中变量的分离形式出现,是奇异Sturm-Lioville问题的本征函数,并构成了轴对称物理问题的自然基础。在这种情况下,需要代表傅立叶系数或矩阵元素的积分,其中包含该函数或它们的乘积。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号