首页> 外文期刊>Applied Acoustics >Elimination of EOG signals from raw EEG signals using step size based recursive least squares- least mean fourth adaptive algorithm
【24h】

Elimination of EOG signals from raw EEG signals using step size based recursive least squares- least mean fourth adaptive algorithm

机译:使用基于步长的递归最小二乘 - 最小均值第四自适应算法消除来自原始EEG信号的EOG信号

获取原文
获取原文并翻译 | 示例

摘要

A novel Step Size based Recursive least squares- Least mean fourth(SSRL) adaptive algorithm is proposed as a noise canceller, in this paper, to eliminate the Ocular artifacts(OAs) from the recorded raw EEG signals. Here, both second and fourth-order power optimization algorithms have been used to eliminate the OAs from raw EEG signals. The Reference signals, such as vertical Electrooculogram and horizontal Electrooculogram signals, have been recorded separately.FIR filter has been used to process the reference signals by updating filter coefficients using the proposed SSRL algorithm. Thereby, true EEG signals are obtained by subtracting the processed signals from the raw signals. Moreover, a mathematical model for the mean square deviation analysis is proposed for the SSRL algorithm, which provides better results compared to the conventional methods. (C) 2021 Elsevier Ltd. All rights reserved.
机译:本文提出了一种新颖的基于步进的递归量 - 最小值平均值 - 最小值平均值第四(SSRL)自适应算法,以消除从记录的原始EEG信号中消除OCULUS伪影(OAS)。 这里,二阶和四阶功率优化算法两者都用于消除来自原始EEG信号的OAS。 诸如垂直电帘图和水平电依客信号的参考信号分别记录。已经使用过滤器来通过使用所提出的SSRL算法更新滤波器系数来处理参考信号。 由此,通过从原始信号中减去处理的信号来获得真正的EEG信号。 此外,对于SSRL算法,提出了一种用于平均方偏差分析的数学模型,其与传统方法相比提供了更好的结果。 (c)2021 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号