首页> 外文期刊>IEEE Transactions on Antennas and Propagation >Coupled Integral Equations for Diffraction by Profiled, Anisotropic, Periodic Structures
【24h】

Coupled Integral Equations for Diffraction by Profiled, Anisotropic, Periodic Structures

机译:轮廓各向异性各向异性周期结构的耦合耦合方程

获取原文
获取原文并翻译 | 示例

摘要

Recently Popov and Neviere have reformulated harmonic Maxwell's equations in Fourier space for periodic structures as a first-order system of differential equations. To ensure fast convergence of the Fourier series of the electromagnetic field, the authors utilized Li's theorems of Fourier factorization in their derivation. In this paper, Popov's and Neviere's equations are slightly modified to facilitate the derivation of an equivalent system of Fredholm integral equations (IEs) of the second kind. This system of coupled IEs involves only transversal components of the electromagnetic field and corresponds to the volume-type electric field integral equation (EFIE) and magnetic field integral equation (MFIE) for the particular case of periodic structures. Therefore, the proposed, fast-converging IEs are herein after referred to as the TEFIE and TMFIE. The numerical solution of the TEFIE and TMFIE can be obtained with conventional direct or iterative solution methods.
机译:最近,Popov和Neviere在傅立叶空间中对周期结构的一阶微分方程组重新构造了谐Maxwell方程。为了确保电磁场的傅立叶级数的快速收敛,作者在推导中利用了李的傅立叶因式分解定理。在本文中,对Popov和Neviere方程进行了稍微修改,以利于推导第二类Fredholm积分方程(IE)的等效系统。这种耦合的IE的系统仅涉及电磁场的横向分量,对于周期性结构的特定情况,它对应于体积型电场积分方程(EFIE)和磁场积分方程(MFIE)。因此,在下文中将所提出的快速收敛的IE称为TEFIE和TMFIE。 TEFIE和TMFIE的数值解可以通过常规的直接或迭代解方法获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号