首页> 外文期刊>Applied numerical mathematics >A volume integral equation method for periodic scattering problems for anisotropic Maxwell's equations
【24h】

A volume integral equation method for periodic scattering problems for anisotropic Maxwell's equations

机译:各向异性麦克斯韦方程周期散射问题的体积分方程方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a volume integral equation method for an electromagnetic scattering problem for three-dimensional Maxwell's equations in the presence of a biperiodic, anisotropic, and possibly discontinuous dielectric scatterer. Such scattering problem can be reformulated as a strongly singular volume integral equation (i.e., integral operators that fail to be weakly singular). In this paper, we firstly prove that the strongly singular volume integral equation satisfies a Garding-type estimate in standard Sobolev spaces. Secondly, we rigorously analyze a spectral Galerkin method for solving the scattering problem. This method relies on the periodization technique of Gennadi Vainikko that allows us to efficiently evaluate the periodized integral operators on trigonometric polynomials using the fast Fourier transform (FFT). The main advantage of the method is its simple implementation that avoids for instance the need to compute quasiperiodic Green's functions. We prove that the numerical solution of the spectral Galerkin method applied to the periodized integral equation converges quasioptimally to the solution of the scattering problem. Some numerical examples are provided for examining the performance of the method.
机译:本文提出了一种存在双周期,各向异性甚至可能不连续的介电散射体的三维麦克斯韦方程组电磁散射问题的体积积分方程法。可以将这种散射问题重新构造为强奇异体积积分方程(即无法弱弱奇异的积分算子)。在本文中,我们首先证明了强奇异体积积分方程满足标准Sobolev空间中的Garding型估计。其次,我们严格地分析了光谱伽勒金方法来解决散射问题。此方法依赖于Gennadi Vainikko的周期化技术,该技术使我们能够使用快速傅里叶变换(FFT)在三角多项式上有效地评估周期化积分算子。该方法的主要优点是其简单的实现方式,例如避免了计算拟周期格林函数的需要。我们证明了将频谱Galerkin方法的数值解应用于周期积分方程,将其拟优化收敛于散射问题的解。提供了一些数值示例来检查该方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号