首页> 外文期刊>IEEE Transactions on Antennas and Propagation >Fast Finite Element Time Domain – Floquet Modal Absorbing Boundary Condition Modelling of Periodic Structures Using Recursive Convolution
【24h】

Fast Finite Element Time Domain – Floquet Modal Absorbing Boundary Condition Modelling of Periodic Structures Using Recursive Convolution

机译:快速有限元时域–使用递归卷积的周期结构浮球模态吸收边界条件建模

获取原文
获取原文并翻译 | 示例

摘要

Finite element time domain (FETD) codes using a Floquet modal absorbing boundary condition to model scattering from periodic structures require the computation of time consuming convolution integrals. In this paper, we propose, for the first time, to reduce this computational burden using recursive convolution. Recursive convolution is based on the ability to accurately approximate functions, over the entire computation time, using a summation of exponential functions. A novel approach, based on the exponential curve fitting facility of the commercially available software MATLAB, is employed. The time efficiency of the developed FETD code based on recursive convolution is demonstrated by comparing its computational speed with that of an FETD code employing standard convolution when modelling plane wave scattering from two-dimensional singly-periodic structures.
机译:使用Floquet模态吸收边界条件来建模来自周期性结构的散射的有限元时域(FETD)代码需要计算费时的卷积积分。在本文中,我们首次提出使用递归卷积减少这种计算负担。递归卷积基于使用指数函数求和在整个计算时间内精确近似函数的能力。基于市售软件MATLAB的指数曲线拟合工具,采用了一种新颖的方法。通过对二维单周期结构的平面波散射进行建模时,通过将其与基于标准卷积的FETD代码的计算速度进行比较,可以证明基于递归卷积的已开发FETD代码的时间效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号