首页> 外文期刊>IEEE Transactions on Antennas and Propagation >An Efficient Method for Antenna Design Optimization Based on Evolutionary Computation and Machine Learning Techniques
【24h】

An Efficient Method for Antenna Design Optimization Based on Evolutionary Computation and Machine Learning Techniques

机译:基于进化计算和机器学习技术的高效天线设计优化方法

获取原文
获取原文并翻译 | 示例

摘要

In recent years, various methods from the evolutionary computation (EC) field have been applied to electromagnetic (EM) design problems and have shown promising results. However, due to the high computational cost of the EM simulations, the efficiency of directly using evolutionary algorithms is often very low (e.g., several weeks' optimization time), which limits the application of these methods for many industrial applications. To address this problem, a new method, called surrogate model assisted differential evolution for antenna synthesis (SADEA), is presented in this paper. The key ideas are: (1) A Gaussian Process (GP) surrogate model is constructed on-line to predict the performances of the candidate designs, saving a lot of computationally expensive EM simulations. (2) A novel surrogate model-aware evolutionary search mechanism is proposed, directing effective global search even when a traditional high-quality surrogate model is not available. Three complex antennas and two mathematical benchmark problems are selected as examples. Compared with the widely used differential evolution and particle swarm optimization, SADEA can obtain comparable results, but achieves a 3 to 7 times speed enhancement for antenna design optimization.
机译:近年来,来自进化计算(EC)领域的各种方法已应用于电磁(EM)设计问题,并显示出令人鼓舞的结果。然而,由于EM仿真的高计算成本,直接使用进化算法的效率通常非常低(例如,几周的优化时间),这限制了这些方法在许多工业应用中的应用。为了解决这个问题,本文提出了一种新的方法,称为替代模型辅助天线进化的差分演化(SADEA)。关键思想是:(1)在线构建高斯过程(GP)替代模型以预测候选设计的性能,从而节省了大量计算上昂贵的EM仿真。 (2)提出了一种新颖的代理模型感知进化搜索机制,即使在传统的高质量代理模型不可用的情况下,也可以指导有效的全局搜索。以三个复杂的天线和两个数学基准问题为例。与广泛使用的差分进化和粒子群优化算法相比,SADEA可获得可比的结果,但在天线设计优化方面可达到3至7倍的速度增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号