...
首页> 外文期刊>Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on >An Efficient High-Frequency Linear RF Amplifier Synthesis Method Based on Evolutionary Computation and Machine Learning Techniques
【24h】

An Efficient High-Frequency Linear RF Amplifier Synthesis Method Based on Evolutionary Computation and Machine Learning Techniques

机译:基于进化计算和机器学习技术的高效高频线性射频放大器合成方法

获取原文
获取原文并翻译 | 示例
           

摘要

Existing radio frequency (RF) integrated circuit (IC) design automation methods focus on the synthesis of circuits at a few GHz, typically less than 10 GHz. That framework is difficult to apply to RF IC synthesis at mm-wave frequencies (e.g., 60–100 GHz). In this paper, a new method, called efficient machine learning-based differential evolution, is presented for mm-wave frequency linear RF amplifier synthesis. By using electromagnetic (EM) simulations to evaluate the key passive components, the evaluation of circuit performances is accurate and solves the limitations of parasitic-included equivalent circuit models and predefined layout templates used in the existing synthesis framework. A decomposition method separates the design variables that require expensive EM simulations and the variables that only need cheap circuit simulations. Hence, a low-dimensional expensive optimization problem is generated. By the newly proposed core algorithm integrating adaptive population generation, naive Bayes classification, Gaussian process and differential evolution, the generated low-dimensional expensive optimization problem can be solved efficiently (by the online surrogate model), and global search (by evolutionary computation) can be achieved. A 100 GHz three-stage differential amplifier is synthesized in a 90 nm CMOS technology. The power gain reaches 10 dB with more than 20 GHz bandwidth. The synthesis costs only 25 h, having a comparable result and a nine times speed enhancement compared with directly using the EM simulator and global optimization algorithms.
机译:现有的射频(RF)集成电路(IC)设计自动化方法侧重于几个GHz(通常小于10 GHz)的电路合成。该框架很难应用于毫米波频率(例如60–100 GHz)的RF IC合成。在本文中,提出了一种称为有效基于机器学习的差分进化的新方法,用于合成毫米波频率线性射频放大器。通过使用电磁(EM)仿真来评估关键的无源元件,电路性能的评估是准确的,并且解决了现有综合框架中使用的包括寄生在内的等效电路模型和预定义布局模板的局限性。分解方法将需要昂贵的EM仿真的设计变量与仅需要廉价的电路仿真的变量分开。因此,产生了低维的昂贵的优化问题。通过新提出的集成了自适应种群生成,朴素贝叶斯分类,高斯过程和微分进化的核心算法,可以有效地(通过在线代理模型)解决生成的低维昂贵优化问题,并且可以进行全局搜索(通过进化计算)取得成就。 100 GHz三级差分放大器采用90 nm CMOS技术合成。在超过20 GHz带宽的情况下,功率增益达到10 dB。合成仅需25小时,与直接使用EM仿真器和全局优化算法相比,具有可比的结果并且速度提高了9倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号