首页> 外文期刊>Algorithmica >Approximation Algorithms for Bounded Degree Phylogenetic Roots
【24h】

Approximation Algorithms for Bounded Degree Phylogenetic Roots

机译:有界系统发生根的近似算法

获取原文
获取原文并翻译 | 示例

摘要

The Degree-Δ Closest Phylogenetic kth Root Problem (ΔCPR_k) is the problem of finding a (phylogenetic) tree T from a given graph G = (V, E) such that (1) the degree of each internal node in T is at least 3 and at most Δ, (2) the external nodes (i.e. leaves) of T are exactly the elements of V, and (3) the number of disagreements, i.e., |E ⊕ {{u, v) : u,v are leaves of T and d_T(u, v) ≤ k}|, is minimized, where d_T(u, v) denotes the distance between u and v in tree T. This problem arises from theoretical studies in evolutionary biology and generalizes several important combinatorial optimization problems such as the maximum matching problem. Unfortunately, it is known to be NP-hard for all fixed constants Δ, k such that either both Δ ≥ 3 and k ≥ 3, or Δ > 3 and k = 2. This paper presents a polynomial-time 8-approximation algorithm for ΔCPR_2 for any fixed Δ > 3, a quadratic-time 12-approximation algorithm for 3CPR3, and a polynomial-time approximation scheme for the maximization version of ΔCPR_k for any fixed Δ and k.
机译:程度Δ最近系统发生k根问题(ΔCPR_k)是从给定图G =(V,E)中找到(系统发生)树T的问题,使得(1)T中每个内部节点的程度至少为3和最多Δ,(2)T的外部节点(即叶)恰好是V的元素,并且(3)分歧的数量,即| E⊕{{u,v):u,v是将T和d_T(u,v)≤k} |的叶子最小化,其中d_T(u,v)表示树T中u和v之间的距离。此问题源于进化生物学的理论研究,归纳了几个重要的组合优化问题,例如最大匹配问题。不幸的是,已知对于所有固定常数Δ,k都是NP-hard,使得Δ≥3和k≥3,或者Δ> 3且k =2。本文提出了多项式时间8逼近算法对于任何固定Δ> 3的ΔCPR_2,对于3CPR3的二次时间12逼近算法,以及对于任何固定Δ和k的最大版本ΔCPR_k的多项式时间逼近方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号