首页> 外文期刊>Algorithmica >Approximation Algorithms for Bounded Degree Phylogenetic Roots
【24h】

Approximation Algorithms for Bounded Degree Phylogenetic Roots

机译:有界系统发生根的近似算法

获取原文
获取原文并翻译 | 示例

摘要

The Degree- Δ Closest Phylogenetic k th Root Problem (ΔCPR k ) is the problem of finding a (phylogenetic) tree T from a given graph G=(V,E) such that (1) the degree of each internal node in T is at least 3 and at most Δ, (2) the external nodes (i.e. leaves) of T are exactly the elements of V, and (3) the number of disagreements, i.e., |E ⊕{{u,v} : u,v are leaves of T and d T (u,v)≤k}|, is minimized, where d T (u,v) denotes the distance between u and v in tree T. This problem arises from theoretical studies in evolutionary biology and generalizes several important combinatorial optimization problems such as the maximum matching problem. Unfortunately, it is known to be NP-hard for all fixed constants Δ,k such that either both Δ≥3 and k≥3, or Δ>3 and k=2. This paper presents a polynomial-time 8-approximation algorithm for Δ CPR 2 for any fixed Δ>3, a quadratic-time 12-approximation algorithm for 3CPR 3, and a polynomial-time approximation scheme for the maximization version of Δ CPR k for any fixed Δ and k.
机译:程度Δ最近系统发生第k个根问题(ΔCPR k )是从给定图G =(V,E)中找到(系统发生)树T的问题,使得(1)程度T中每个内部节点的至少3个和最多Δ,(2)T的外部节点(即叶子)恰好是V的元素,并且(3)分歧的数量,即| E⊕{{ u,v}:u,v是T的叶子,并且d T (u,v)≤k} |最小,其中d T (u,v)表示树T中u和v之间的距离。此问题源于进化生物学的理论研究,它概括了几个重要的组合优化问题,例如最大匹配问题。不幸的是,已知对于所有固定常数Δ,k都是NP-hard的,使得Δ≥3和k≥3,或者Δ> 3且k = 2。本文针对任意固定Δ> 3提出了针对ΔCPR 2 的多项式时间8逼近算法,针对3CPR 3 的二次时间12逼近算法以及对于任何固定的Δ和k,ΔCPR k 的最大值版本的多项式时间近似方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号